187 lines
5.6 KiB
Python
187 lines
5.6 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import pytest
|
|
import torch
|
|
|
|
from mmseg.models.backbones.mae import MAE
|
|
from .utils import check_norm_state
|
|
|
|
|
|
def test_mae_backbone():
|
|
with pytest.raises(TypeError):
|
|
# pretrained must be a string path
|
|
model = MAE()
|
|
model.init_weights(pretrained=0)
|
|
|
|
with pytest.raises(TypeError):
|
|
# img_size must be int or tuple
|
|
model = MAE(img_size=512.0)
|
|
|
|
with pytest.raises(TypeError):
|
|
# out_indices must be int ,list or tuple
|
|
model = MAE(out_indices=1.)
|
|
|
|
with pytest.raises(AssertionError):
|
|
# The length of img_size tuple must be lower than 3.
|
|
MAE(img_size=(224, 224, 224))
|
|
|
|
with pytest.raises(TypeError):
|
|
# Pretrained must be None or Str.
|
|
MAE(pretrained=123)
|
|
|
|
# Test img_size isinstance tuple
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
model = MAE(img_size=(224, ))
|
|
model.init_weights()
|
|
model(imgs)
|
|
|
|
# Test img_size isinstance tuple
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
model = MAE(img_size=(224, 224))
|
|
model(imgs)
|
|
|
|
# Test norm_eval = True
|
|
model = MAE(norm_eval=True)
|
|
model.train()
|
|
|
|
# Test BEiT backbone with input size of 224 and patch size of 16
|
|
model = MAE()
|
|
model.init_weights()
|
|
model.train()
|
|
|
|
# Test out_indices = list
|
|
model = MAE(out_indices=[2, 4, 8, 12])
|
|
model.train()
|
|
|
|
assert check_norm_state(model.modules(), True)
|
|
|
|
# Test image size = (224, 224)
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert feat[-1].shape == (1, 768, 14, 14)
|
|
|
|
# Test MAE backbone with input size of 256 and patch size of 16
|
|
model = MAE(img_size=(256, 256))
|
|
model.init_weights()
|
|
model.train()
|
|
imgs = torch.randn(1, 3, 256, 256)
|
|
feat = model(imgs)
|
|
assert feat[-1].shape == (1, 768, 16, 16)
|
|
|
|
# Test MAE backbone with input size of 32 and patch size of 16
|
|
model = MAE(img_size=(32, 32))
|
|
model.init_weights()
|
|
model.train()
|
|
imgs = torch.randn(1, 3, 32, 32)
|
|
feat = model(imgs)
|
|
assert feat[-1].shape == (1, 768, 2, 2)
|
|
|
|
# Test unbalanced size input image
|
|
model = MAE(img_size=(112, 224))
|
|
model.init_weights()
|
|
model.train()
|
|
imgs = torch.randn(1, 3, 112, 224)
|
|
feat = model(imgs)
|
|
assert feat[-1].shape == (1, 768, 7, 14)
|
|
|
|
# Test irregular input image
|
|
model = MAE(img_size=(234, 345))
|
|
model.init_weights()
|
|
model.train()
|
|
imgs = torch.randn(1, 3, 234, 345)
|
|
feat = model(imgs)
|
|
assert feat[-1].shape == (1, 768, 14, 21)
|
|
|
|
# Test init_values=0
|
|
model = MAE(init_values=0)
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert feat[-1].shape == (1, 768, 14, 14)
|
|
|
|
# Test final norm
|
|
model = MAE(final_norm=True)
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert feat[-1].shape == (1, 768, 14, 14)
|
|
|
|
# Test patch norm
|
|
model = MAE(patch_norm=True)
|
|
imgs = torch.randn(1, 3, 224, 224)
|
|
feat = model(imgs)
|
|
assert feat[-1].shape == (1, 768, 14, 14)
|
|
|
|
|
|
def test_mae_init():
|
|
path = 'PATH_THAT_DO_NOT_EXIST'
|
|
# Test all combinations of pretrained and init_cfg
|
|
# pretrained=None, init_cfg=None
|
|
model = MAE(pretrained=None, init_cfg=None)
|
|
assert model.init_cfg is None
|
|
model.init_weights()
|
|
|
|
# pretrained=None
|
|
# init_cfg loads pretrain from an non-existent file
|
|
model = MAE(
|
|
pretrained=None, init_cfg=dict(type='Pretrained', checkpoint=path))
|
|
assert model.init_cfg == dict(type='Pretrained', checkpoint=path)
|
|
# Test loading a checkpoint from an non-existent file
|
|
with pytest.raises(OSError):
|
|
model.init_weights()
|
|
|
|
# test resize_rel_pos_embed
|
|
value = torch.randn(732, 16)
|
|
abs_pos_embed_value = torch.rand(1, 17, 768)
|
|
ckpt = {
|
|
'state_dict': {
|
|
'layers.0.attn.relative_position_index': 0,
|
|
'layers.0.attn.relative_position_bias_table': value,
|
|
'pos_embed': abs_pos_embed_value
|
|
}
|
|
}
|
|
model = MAE(img_size=(512, 512))
|
|
# If scipy is installed, this AttributeError would not be raised.
|
|
from mmengine.utils import is_installed
|
|
if not is_installed('scipy'):
|
|
with pytest.raises(AttributeError):
|
|
model.resize_rel_pos_embed(ckpt)
|
|
|
|
# test resize abs pos embed
|
|
ckpt = model.resize_abs_pos_embed(ckpt['state_dict'])
|
|
|
|
# pretrained=None
|
|
# init_cfg=123, whose type is unsupported
|
|
model = MAE(pretrained=None, init_cfg=123)
|
|
with pytest.raises(TypeError):
|
|
model.init_weights()
|
|
|
|
# pretrained loads pretrain from an non-existent file
|
|
# init_cfg=None
|
|
model = MAE(pretrained=path, init_cfg=None)
|
|
assert model.init_cfg == dict(type='Pretrained', checkpoint=path)
|
|
# Test loading a checkpoint from an non-existent file
|
|
with pytest.raises(OSError):
|
|
model.init_weights()
|
|
|
|
# pretrained loads pretrain from an non-existent file
|
|
# init_cfg loads pretrain from an non-existent file
|
|
with pytest.raises(AssertionError):
|
|
model = MAE(
|
|
pretrained=path, init_cfg=dict(type='Pretrained', checkpoint=path))
|
|
with pytest.raises(AssertionError):
|
|
model = MAE(pretrained=path, init_cfg=123)
|
|
|
|
# pretrain=123, whose type is unsupported
|
|
# init_cfg=None
|
|
with pytest.raises(TypeError):
|
|
model = MAE(pretrained=123, init_cfg=None)
|
|
|
|
# pretrain=123, whose type is unsupported
|
|
# init_cfg loads pretrain from an non-existent file
|
|
with pytest.raises(AssertionError):
|
|
model = MAE(
|
|
pretrained=123, init_cfg=dict(type='Pretrained', checkpoint=path))
|
|
|
|
# pretrain=123, whose type is unsupported
|
|
# init_cfg=123, whose type is unsupported
|
|
with pytest.raises(AssertionError):
|
|
model = MAE(pretrained=123, init_cfg=123)
|