139 lines
5.6 KiB
YAML
139 lines
5.6 KiB
YAML
Collections:
|
|
- Name: Segmenter
|
|
License: Apache License 2.0
|
|
Metadata:
|
|
Training Data:
|
|
- ADE20K
|
|
Paper:
|
|
Title: 'Segmenter: Transformer for Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/2105.05633
|
|
README: configs/segmenter/README.md
|
|
Frameworks:
|
|
- PyTorch
|
|
Models:
|
|
- Name: segmenter_vit-t_mask_8xb1-160k_ade20k-512x512
|
|
In Collection: Segmenter
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 39.99
|
|
mIoU(ms+flip): 40.83
|
|
Config: configs/segmenter/segmenter_vit-t_mask_8xb1-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 8
|
|
Architecture:
|
|
- ViT-T_16
|
|
- Segmenter
|
|
- Mask
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 1.21
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706-ffcf7509.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json
|
|
Paper:
|
|
Title: 'Segmenter: Transformer for Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/2105.05633
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15
|
|
Framework: PyTorch
|
|
- Name: segmenter_vit-s_fcn_8xb1-160k_ade20k-512x512
|
|
In Collection: Segmenter
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 45.75
|
|
mIoU(ms+flip): 46.82
|
|
Config: configs/segmenter/segmenter_vit-s_fcn_8xb1-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 8
|
|
Architecture:
|
|
- ViT-S_16
|
|
- Segmenter
|
|
- Linear
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 1.78
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713-39658c46.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713.log.json
|
|
Paper:
|
|
Title: 'Segmenter: Transformer for Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/2105.05633
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15
|
|
Framework: PyTorch
|
|
- Name: segmenter_vit-s_mask_8xb1-160k_ade20k-512x512
|
|
In Collection: Segmenter
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 46.19
|
|
mIoU(ms+flip): 47.85
|
|
Config: configs/segmenter/segmenter_vit-s_mask_8xb1-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 8
|
|
Architecture:
|
|
- ViT-S_16
|
|
- Segmenter
|
|
- Mask
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 2.03
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706-511bb103.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json
|
|
Paper:
|
|
Title: 'Segmenter: Transformer for Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/2105.05633
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15
|
|
Framework: PyTorch
|
|
- Name: segmenter_vit-b_mask_8xb1-160k_ade20k-512x512
|
|
In Collection: Segmenter
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 49.6
|
|
mIoU(ms+flip): 51.07
|
|
Config: configs/segmenter/segmenter_vit-b_mask_8xb1-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 8
|
|
Architecture:
|
|
- ViT-B_16
|
|
- Segmenter
|
|
- Mask
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 4.2
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706-bc533b08.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json
|
|
Paper:
|
|
Title: 'Segmenter: Transformer for Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/2105.05633
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15
|
|
Framework: PyTorch
|
|
- Name: segmenter_vit-l_mask_8xb1-160k_ade20k-512x512
|
|
In Collection: Segmenter
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 52.16
|
|
mIoU(ms+flip): 53.65
|
|
Config: configs/segmenter/segmenter_vit-l_mask_8xb1-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 8
|
|
Architecture:
|
|
- ViT-L_16
|
|
- Segmenter
|
|
- Mask
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 16.56
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750-7ef345be.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750.log.json
|
|
Paper:
|
|
Title: 'Segmenter: Transformer for Semantic Segmentation'
|
|
URL: https://arxiv.org/abs/2105.05633
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15
|
|
Framework: PyTorch
|