mmsegmentation/configs/unet/metafile.yaml

643 lines
26 KiB
YAML

Collections:
- Name: UNet
License: Apache License 2.0
Metadata:
Training Data:
- Cityscapes
- DRIVE
- STARE
- CHASE_DB1
- HRF
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
README: configs/unet/README.md
Frameworks:
- PyTorch
Models:
- Name: unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 69.1
mIoU(ms+flip): 71.05
Config: configs/unet/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- FCN
Training Resources: 4x V100 GPUS
Memory (GB): 17.91
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204-6860854e.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes/fcn_unet_s5-d16_4x4_512x1024_160k_cityscapes_20211210_145204.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_fcn_4xb4-40k_drive-64x64
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: DRIVE
Metrics:
mDice: 88.38
Dice: 78.67
Config: configs/unet/unet-s5-d16_fcn_4xb4-40k_drive-64x64.py
Metadata:
Training Data: DRIVE
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- FCN
Training Resources: 4x V100 GPUS
Memory (GB): 0.68
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_64x64_40k_drive/unet_s5-d16_64x64_40k_drive-20201223_191051.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_drive-64x64
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: DRIVE
Metrics:
mDice: 88.71
Dice: 79.32
Config: configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py
Metadata:
Training Data: DRIVE
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- FCN
Training Resources: 4x V100 GPUS
Memory (GB): 0.582
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201820-785de5c2.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/fcn_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201820.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_pspnet_4xb4-40k_drive-64x64
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: DRIVE
Metrics:
mDice: 88.35
Dice: 78.62
Config: configs/unet/unet-s5-d16_pspnet_4xb4-40k_drive-64x64.py
Metadata:
Training Data: DRIVE
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- PSPNet
Training Resources: 4x V100 GPUS
Memory (GB): 0.599
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive-20201227_181818.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_drive-64x64
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: DRIVE
Metrics:
mDice: 88.76
Dice: 79.42
Config: configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py
Metadata:
Training Data: DRIVE
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- PSPNet
Training Resources: 4x V100 GPUS
Memory (GB): 0.585
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201821-22b3e3ba.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/pspnet_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201821.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_deeplabv3_4xb4-40k_drive-64x64
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: DRIVE
Metrics:
mDice: 88.38
Dice: 78.69
Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_drive-64x64.py
Metadata:
Training Data: DRIVE
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- DeepLabV3
Training Resources: 4x V100 GPUS
Memory (GB): 0.596
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive-20201226_094047.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_drive-64x64
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: DRIVE
Metrics:
mDice: 88.84
Dice: 79.56
Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py
Metadata:
Training Data: DRIVE
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- DeepLabV3
Training Resources: 4x V100 GPUS
Memory (GB): 0.582
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201825-6bf0efd7.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_64x64_40k_drive_20211210_201825.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_fcn_4xb4-40k_stare-128x128
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: STARE
Metrics:
mDice: 89.78
Dice: 81.02
Config: configs/unet/unet-s5-d16_fcn_4xb4-40k_stare-128x128.py
Metadata:
Training Data: STARE
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- FCN
Training Resources: 4x V100 GPUS
Memory (GB): 0.968
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_stare/unet_s5-d16_128x128_40k_stare-20201223_191051.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_stare-128x128
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: STARE
Metrics:
mDice: 90.65
Dice: 82.7
Config: configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py
Metadata:
Training Data: STARE
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- FCN
Training Resources: 4x V100 GPUS
Memory (GB): 0.986
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201821-f75705a9.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201821.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_pspnet_4xb4-40k_stare-128x128
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: STARE
Metrics:
mDice: 89.89
Dice: 81.22
Config: configs/unet/unet-s5-d16_pspnet_4xb4-40k_stare-128x128.py
Metadata:
Training Data: STARE
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- PSPNet
Training Resources: 4x V100 GPUS
Memory (GB): 0.982
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare-20201227_181818.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_stare-128x128
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: STARE
Metrics:
mDice: 90.72
Dice: 82.84
Config: configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py
Metadata:
Training Data: STARE
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- PSPNet
Training Resources: 4x V100 GPUS
Memory (GB): 1.028
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201823-f1063ef7.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201823.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_deeplabv3_4xb4-40k_stare-128x128
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: STARE
Metrics:
mDice: 89.73
Dice: 80.93
Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_stare-128x128.py
Metadata:
Training Data: STARE
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- DeepLabV3
Training Resources: 4x V100 GPUS
Memory (GB): 0.999
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare-20201226_094047.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_stare-128x128
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: STARE
Metrics:
mDice: 90.65
Dice: 82.71
Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py
Metadata:
Training Data: STARE
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- DeepLabV3
Training Resources: 4x V100 GPUS
Memory (GB): 1.01
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201825-21db614c.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_stare_20211210_201825.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_fcn_4xb4-40k_chase-db1-128x128
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: CHASE_DB1
Metrics:
mDice: 89.46
Dice: 80.24
Config: configs/unet/unet-s5-d16_fcn_4xb4-40k_chase-db1-128x128.py
Metadata:
Training Data: CHASE_DB1
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- FCN
Training Resources: 4x V100 GPUS
Memory (GB): 0.968
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_chase_db1/unet_s5-d16_128x128_40k_chase_db1-20201223_191051.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: CHASE_DB1
Metrics:
mDice: 89.52
Dice: 80.4
Config: configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py
Metadata:
Training Data: CHASE_DB1
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- FCN
Training Resources: 4x V100 GPUS
Memory (GB): 0.986
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201821-1c4eb7cf.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/fcn_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201821.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_pspnet_4xb4-40k_chase-db1-128x128
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: CHASE_DB1
Metrics:
mDice: 89.52
Dice: 80.36
Config: configs/unet/unet-s5-d16_pspnet_4xb4-40k_chase-db1-128x128.py
Metadata:
Training Data: CHASE_DB1
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- PSPNet
Training Resources: 4x V100 GPUS
Memory (GB): 0.982
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1-20201227_181818.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: CHASE_DB1
Metrics:
mDice: 89.45
Dice: 80.28
Config: configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py
Metadata:
Training Data: CHASE_DB1
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- PSPNet
Training Resources: 4x V100 GPUS
Memory (GB): 1.028
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201823-c0802c4d.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/pspnet_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201823.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet_s5-d16_deeplabv3_4xb4-40k_chase-db1-128x128
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: CHASE_DB1
Metrics:
mDice: 89.57
Dice: 80.47
Config: configs/unet/unet_s5-d16_deeplabv3_4xb4-40k_chase-db1-128x128.py
Metadata:
Training Data: CHASE_DB1
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- DeepLabV3
Training Resources: 4x V100 GPUS
Memory (GB): 0.999
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1-20201226_094047.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: CHASE_DB1
Metrics:
mDice: 89.49
Dice: 80.37
Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py
Metadata:
Training Data: CHASE_DB1
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- DeepLabV3
Training Resources: 4x V100 GPUS
Memory (GB): 1.01
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201825-4ef29df5.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_128x128_40k_chase-db1_20211210_201825.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_fcn_4xb4-40k_hrf-256x256
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: HRF
Metrics:
mDice: 88.92
Dice: 79.45
Config: configs/unet/unet-s5-d16_fcn_4xb4-40k_hrf-256x256.py
Metadata:
Training Data: HRF
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- FCN
Training Resources: 4x V100 GPUS
Memory (GB): 2.525
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_256x256_40k_hrf/unet_s5-d16_256x256_40k_hrf-20201223_173724.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: HRF
Metrics:
mDice: 89.64
Dice: 80.87
Config: configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py
Metadata:
Training Data: HRF
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- FCN
Training Resources: 4x V100 GPUS
Memory (GB): 2.623
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201821-c314da8a.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/fcn_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201821.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_pspnet_4xb4-40k_hrf-256x256
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: HRF
Metrics:
mDice: 89.24
Dice: 80.07
Config: configs/unet/unet-s5-d16_pspnet_4xb4-40k_hrf-256x256.py
Metadata:
Training Data: HRF
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- PSPNet
Training Resources: 4x V100 GPUS
Memory (GB): 2.588
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf-20201227_181818.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: HRF
Metrics:
mDice: 89.69
Dice: 80.96
Config: configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py
Metadata:
Training Data: HRF
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- PSPNet
Training Resources: 4x V100 GPUS
Memory (GB): 2.798
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201823-53d492fa.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/pspnet_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_201823.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_deeplabv3_4xb4-40k_hrf-256x256
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: HRF
Metrics:
mDice: 89.32
Dice: 80.21
Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-40k_hrf-256x256.py
Metadata:
Training Data: HRF
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- DeepLabV3
Training Resources: 4x V100 GPUS
Memory (GB): 2.604
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf-20201226_094047.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch
- Name: unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256
In Collection: UNet
Results:
Task: Semantic Segmentation
Dataset: HRF
Metrics:
mDice: 89.56
Dice: 80.71
Config: configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py
Metadata:
Training Data: HRF
Batch Size: 16
Architecture:
- UNet-S5-D16
- UNet
- DeepLabV3
Training Resources: 4x V100 GPUS
Memory (GB): 2.607
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_202032-59daf7a4.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf/deeplabv3_unet_s5-d16_ce-1.0-dice-3.0_256x256_40k_hrf_20211210_202032.log.json
Paper:
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
URL: https://arxiv.org/abs/1505.04597
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
Framework: PyTorch