341 lines
14 KiB
YAML
341 lines
14 KiB
YAML
Collections:
|
|
- Name: Segformer
|
|
License: Apache License 2.0
|
|
Metadata:
|
|
Training Data:
|
|
- ADE20K
|
|
- Cityscapes
|
|
Paper:
|
|
Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
|
Transformers'
|
|
URL: https://arxiv.org/abs/2105.15203
|
|
README: configs/segformer/README.md
|
|
Frameworks:
|
|
- PyTorch
|
|
Models:
|
|
- Name: segformer_mit-b0_8xb2-160k_ade20k-512x512
|
|
In Collection: Segformer
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 37.41
|
|
mIoU(ms+flip): 38.34
|
|
Config: configs/segformer/segformer_mit-b0_8xb2-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- MIT-B0
|
|
- Segformer
|
|
Training Resources: 8x 1080 Ti GPUS
|
|
Memory (GB): 2.1
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530-8ffa8fda.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_512x512_160k_ade20k/segformer_mit-b0_512x512_160k_ade20k_20210726_101530.log.json
|
|
Paper:
|
|
Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
|
Transformers'
|
|
URL: https://arxiv.org/abs/2105.15203
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246
|
|
Framework: PyTorch
|
|
- Name: segformer_mit-b1_8xb2-160k_ade20k-512x512
|
|
In Collection: Segformer
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 40.97
|
|
mIoU(ms+flip): 42.54
|
|
Config: configs/segformer/segformer_mit-b1_8xb2-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- MIT-B1
|
|
- Segformer
|
|
Training Resources: 8x TITAN Xp GPUS
|
|
Memory (GB): 2.6
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106-d70e859d.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_512x512_160k_ade20k/segformer_mit-b1_512x512_160k_ade20k_20210726_112106.log.json
|
|
Paper:
|
|
Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
|
Transformers'
|
|
URL: https://arxiv.org/abs/2105.15203
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246
|
|
Framework: PyTorch
|
|
- Name: segformer_mit-b2_8xb2-160k_ade20k-512x512
|
|
In Collection: Segformer
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 45.58
|
|
mIoU(ms+flip): 47.03
|
|
Config: configs/segformer/segformer_mit-b2_8xb2-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- MIT-B2
|
|
- Segformer
|
|
Training Resources: 8x TITAN Xp GPUS
|
|
Memory (GB): 3.6
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103-cbd414ac.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_512x512_160k_ade20k/segformer_mit-b2_512x512_160k_ade20k_20210726_112103.log.json
|
|
Paper:
|
|
Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
|
Transformers'
|
|
URL: https://arxiv.org/abs/2105.15203
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246
|
|
Framework: PyTorch
|
|
- Name: segformer_mit-b3_8xb2-160k_ade20k-512x512
|
|
In Collection: Segformer
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 47.82
|
|
mIoU(ms+flip): 48.81
|
|
Config: configs/segformer/segformer_mit-b3_8xb2-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- MIT-B3
|
|
- Segformer
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 4.8
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410-962b98d2.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_512x512_160k_ade20k/segformer_mit-b3_512x512_160k_ade20k_20210726_081410.log.json
|
|
Paper:
|
|
Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
|
Transformers'
|
|
URL: https://arxiv.org/abs/2105.15203
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246
|
|
Framework: PyTorch
|
|
- Name: segformer_mit-b4_8xb2-160k_ade20k-512x512
|
|
In Collection: Segformer
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 48.46
|
|
mIoU(ms+flip): 49.76
|
|
Config: configs/segformer/segformer_mit-b4_8xb2-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- MIT-B4
|
|
- Segformer
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 6.1
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055-7f509d7d.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_512x512_160k_ade20k/segformer_mit-b4_512x512_160k_ade20k_20210728_183055.log.json
|
|
Paper:
|
|
Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
|
Transformers'
|
|
URL: https://arxiv.org/abs/2105.15203
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246
|
|
Framework: PyTorch
|
|
- Name: segformer_mit-b5_8xb2-160k_ade20k-512x512
|
|
In Collection: Segformer
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 49.13
|
|
mIoU(ms+flip): 50.22
|
|
Config: configs/segformer/segformer_mit-b5_8xb2-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- MIT-B5
|
|
- Segformer
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 7.2
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_512x512_160k_ade20k/segformer_mit-b5_512x512_160k_ade20k_20210726_145235-94cedf59.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_512x512_160k_ade20k/segformer_mit-b5_512x512_160k_ade20k_20210726_145235.log.json
|
|
Paper:
|
|
Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
|
Transformers'
|
|
URL: https://arxiv.org/abs/2105.15203
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246
|
|
Framework: PyTorch
|
|
- Name: segformer_mit-b5_8xb2-160k_ade20k-640x640
|
|
In Collection: Segformer
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 49.62
|
|
mIoU(ms+flip): 50.36
|
|
Config: configs/segformer/segformer_mit-b5_8xb2-160k_ade20k-640x640.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- MIT-B5
|
|
- Segformer
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 11.5
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243-41d2845b.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_640x640_160k_ade20k/segformer_mit-b5_640x640_160k_ade20k_20210801_121243.log.json
|
|
Paper:
|
|
Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
|
Transformers'
|
|
URL: https://arxiv.org/abs/2105.15203
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246
|
|
Framework: PyTorch
|
|
- Name: segformer_mit-b0_8xb1-160k_cityscapes-1024x1024
|
|
In Collection: Segformer
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.54
|
|
mIoU(ms+flip): 78.22
|
|
Config: configs/segformer/segformer_mit-b0_8xb1-160k_cityscapes-1024x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- MIT-B0
|
|
- Segformer
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 3.64
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes/segformer_mit-b0_8x1_1024x1024_160k_cityscapes_20211208_101857-e7f88502.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b0_8x1_1024x1024_160k_cityscapes/segformer_mit-b0_8x1_1024x1024_160k_cityscapes_20211208_101857.log.json
|
|
Paper:
|
|
Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
|
Transformers'
|
|
URL: https://arxiv.org/abs/2105.15203
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246
|
|
Framework: PyTorch
|
|
- Name: segformer_mit-b1_8xb1-160k_cityscapes-1024x1024
|
|
In Collection: Segformer
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.56
|
|
mIoU(ms+flip): 79.73
|
|
Config: configs/segformer/segformer_mit-b1_8xb1-160k_cityscapes-1024x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- MIT-B1
|
|
- Segformer
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 4.49
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_8x1_1024x1024_160k_cityscapes/segformer_mit-b1_8x1_1024x1024_160k_cityscapes_20211208_064213-655c7b3f.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b1_8x1_1024x1024_160k_cityscapes/segformer_mit-b1_8x1_1024x1024_160k_cityscapes_20211208_064213.log.json
|
|
Paper:
|
|
Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
|
Transformers'
|
|
URL: https://arxiv.org/abs/2105.15203
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246
|
|
Framework: PyTorch
|
|
- Name: segformer_mit-b2_8xb1-160k_cityscapes-1024x1024
|
|
In Collection: Segformer
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 81.08
|
|
mIoU(ms+flip): 82.18
|
|
Config: configs/segformer/segformer_mit-b2_8xb1-160k_cityscapes-1024x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- MIT-B2
|
|
- Segformer
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 7.42
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_8x1_1024x1024_160k_cityscapes/segformer_mit-b2_8x1_1024x1024_160k_cityscapes_20211207_134205-6096669a.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b2_8x1_1024x1024_160k_cityscapes/segformer_mit-b2_8x1_1024x1024_160k_cityscapes_20211207_134205.log.json
|
|
Paper:
|
|
Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
|
Transformers'
|
|
URL: https://arxiv.org/abs/2105.15203
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246
|
|
Framework: PyTorch
|
|
- Name: segformer_mit-b3_8xb1-160k_cityscapes-1024x1024
|
|
In Collection: Segformer
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 81.94
|
|
mIoU(ms+flip): 83.14
|
|
Config: configs/segformer/segformer_mit-b3_8xb1-160k_cityscapes-1024x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- MIT-B3
|
|
- Segformer
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 10.86
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_8x1_1024x1024_160k_cityscapes/segformer_mit-b3_8x1_1024x1024_160k_cityscapes_20211206_224823-a8f8a177.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b3_8x1_1024x1024_160k_cityscapes/segformer_mit-b3_8x1_1024x1024_160k_cityscapes_20211206_224823.log.json
|
|
Paper:
|
|
Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
|
Transformers'
|
|
URL: https://arxiv.org/abs/2105.15203
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246
|
|
Framework: PyTorch
|
|
- Name: segformer_mit-b4_8xb1-160k_cityscapes-1024x1024
|
|
In Collection: Segformer
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 81.89
|
|
mIoU(ms+flip): 83.38
|
|
Config: configs/segformer/segformer_mit-b4_8xb1-160k_cityscapes-1024x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- MIT-B4
|
|
- Segformer
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 15.07
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_8x1_1024x1024_160k_cityscapes/segformer_mit-b4_8x1_1024x1024_160k_cityscapes_20211207_080709-07f6c333.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b4_8x1_1024x1024_160k_cityscapes/segformer_mit-b4_8x1_1024x1024_160k_cityscapes_20211207_080709.log.json
|
|
Paper:
|
|
Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
|
Transformers'
|
|
URL: https://arxiv.org/abs/2105.15203
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246
|
|
Framework: PyTorch
|
|
- Name: segformer_mit-b5_8xb1-160k_cityscapes-1024x1024
|
|
In Collection: Segformer
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 82.25
|
|
mIoU(ms+flip): 83.48
|
|
Config: configs/segformer/segformer_mit-b5_8xb1-160k_cityscapes-1024x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- MIT-B5
|
|
- Segformer
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 18.0
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_8x1_1024x1024_160k_cityscapes/segformer_mit-b5_8x1_1024x1024_160k_cityscapes_20211206_072934-87a052ec.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segformer/segformer_mit-b5_8x1_1024x1024_160k_cityscapes/segformer_mit-b5_8x1_1024x1024_160k_cityscapes_20211206_072934.log.json
|
|
Paper:
|
|
Title: 'SegFormer: Simple and Efficient Design for Semantic Segmentation with
|
|
Transformers'
|
|
URL: https://arxiv.org/abs/2105.15203
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mit.py#L246
|
|
Framework: PyTorch
|