828 lines
26 KiB
YAML
828 lines
26 KiB
YAML
Collections:
|
|
- Name: FCN
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- ADE20K
|
|
- Pascal VOC 2012 + Aug
|
|
- Pascal Context
|
|
- Pascal Context 59
|
|
Paper:
|
|
URL: https://arxiv.org/abs/1411.4038
|
|
Title: Fully Convolutional Networks for Semantic Segmentation
|
|
README: configs/fcn/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fcn_head.py#L11
|
|
Version: v0.17.0
|
|
Converted From:
|
|
Code: https://github.com/BVLC/caffe/wiki/Model-Zoo#fcn
|
|
Models:
|
|
- Name: fcn_r50-d8_512x1024_40k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 239.81
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 5.7
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 72.25
|
|
mIoU(ms+flip): 73.36
|
|
Config: configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth
|
|
- Name: fcn_r101-d8_512x1024_40k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 375.94
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 9.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 75.45
|
|
mIoU(ms+flip): 76.58
|
|
Config: configs/fcn/fcn_r101-d8_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852-a883d3a1.pth
|
|
- Name: fcn_r50-d8_769x769_40k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (769,769)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 555.56
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 6.5
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 71.47
|
|
mIoU(ms+flip): 72.54
|
|
Config: configs/fcn/fcn_r50-d8_769x769_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104-977b5d02.pth
|
|
- Name: fcn_r101-d8_769x769_40k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (769,769)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 840.34
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 10.4
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 73.93
|
|
mIoU(ms+flip): 75.14
|
|
Config: configs/fcn/fcn_r101-d8_769x769_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208-7d4ab69c.pth
|
|
- Name: fcn_r18-d8_512x1024_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-18-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 68.26
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 1.7
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 71.11
|
|
mIoU(ms+flip): 72.91
|
|
Config: configs/fcn/fcn_r18-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth
|
|
- Name: fcn_r50-d8_512x1024_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 73.61
|
|
mIoU(ms+flip): 74.24
|
|
Config: configs/fcn/fcn_r50-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019-03aa804d.pth
|
|
- Name: fcn_r101-d8_512x1024_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 75.13
|
|
mIoU(ms+flip): 75.94
|
|
Config: configs/fcn/fcn_r101-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth
|
|
- Name: fcn_r101-d8_fp16_512x1024_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 115.74
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP16
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 5.37
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.8
|
|
Config: configs/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_fp16_512x1024_80k_cityscapes/fcn_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230921-fb13e883.pth
|
|
- Name: fcn_r18-d8_769x769_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-18-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 156.25
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 1.9
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 70.8
|
|
mIoU(ms+flip): 73.16
|
|
Config: configs/fcn/fcn_r18-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes_20201225_021451-9739d1b8.pth
|
|
- Name: fcn_r50-d8_769x769_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 72.64
|
|
mIoU(ms+flip): 73.32
|
|
Config: configs/fcn/fcn_r50-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749-f5caeabc.pth
|
|
- Name: fcn_r101-d8_769x769_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 75.52
|
|
mIoU(ms+flip): 76.61
|
|
Config: configs/fcn/fcn_r101-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354-45cbac68.pth
|
|
- Name: fcn_r18b-d8_512x1024_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-18b-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 59.74
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 1.6
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 70.24
|
|
mIoU(ms+flip): 72.77
|
|
Config: configs/fcn/fcn_r18b-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_512x1024_80k_cityscapes/fcn_r18b-d8_512x1024_80k_cityscapes_20201225_230143-92c0f445.pth
|
|
- Name: fcn_r50b-d8_512x1024_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-50b-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 238.1
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 5.6
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 75.65
|
|
mIoU(ms+flip): 77.59
|
|
Config: configs/fcn/fcn_r50b-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_512x1024_80k_cityscapes/fcn_r50b-d8_512x1024_80k_cityscapes_20201225_094221-82957416.pth
|
|
- Name: fcn_r101b-d8_512x1024_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101b-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 366.3
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 9.1
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.37
|
|
mIoU(ms+flip): 78.77
|
|
Config: configs/fcn/fcn_r101b-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_512x1024_80k_cityscapes/fcn_r101b-d8_512x1024_80k_cityscapes_20201226_160213-4543858f.pth
|
|
- Name: fcn_r18b-d8_769x769_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-18b-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 149.25
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 1.7
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 69.66
|
|
mIoU(ms+flip): 72.07
|
|
Config: configs/fcn/fcn_r18b-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes_20201226_004430-32d504e5.pth
|
|
- Name: fcn_r50b-d8_769x769_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-50b-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 549.45
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 6.3
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 73.83
|
|
mIoU(ms+flip): 76.6
|
|
Config: configs/fcn/fcn_r50b-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes_20201225_094223-94552d38.pth
|
|
- Name: fcn_r101b-d8_769x769_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101b-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 869.57
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 10.3
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.02
|
|
mIoU(ms+flip): 78.67
|
|
Config: configs/fcn/fcn_r101b-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes_20201226_170012-82be37e2.pth
|
|
- Name: fcn_d6_r50-d16_512x1024_40k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-50-D16
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 97.85
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 3.4
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.06
|
|
mIoU(ms+flip): 78.85
|
|
Config: configs/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes_20210305_130133-98d5d1bc.pth
|
|
- Name: fcn_d6_r50-d16_512x1024_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-50-D16
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 96.62
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.27
|
|
mIoU(ms+flip): 78.88
|
|
Config: configs/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes_20210306_115604-133c292f.pth
|
|
- Name: fcn_d6_r50-d16_769x769_40k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-50-D16
|
|
crop size: (769,769)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 239.81
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 3.7
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.82
|
|
mIoU(ms+flip): 78.22
|
|
Config: configs/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes_20210305_185744-1aab18ed.pth
|
|
- Name: fcn_d6_r50-d16_769x769_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-50-D16
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 240.96
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.04
|
|
mIoU(ms+flip): 78.4
|
|
Config: configs/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes_20210305_200413-109d88eb.pth
|
|
- Name: fcn_d6_r101-d16_512x1024_40k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101-D16
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 124.38
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 4.5
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.36
|
|
mIoU(ms+flip): 79.18
|
|
Config: configs/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes_20210305_130337-9cf2b450.pth
|
|
- Name: fcn_d6_r101-d16_512x1024_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101-D16
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 121.07
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.46
|
|
mIoU(ms+flip): 80.42
|
|
Config: configs/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes_20210308_102747-cb336445.pth
|
|
- Name: fcn_d6_r101-d16_769x769_40k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101-D16
|
|
crop size: (769,769)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 320.51
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 5.0
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.28
|
|
mIoU(ms+flip): 78.95
|
|
Config: configs/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes_20210308_102453-60b114e9.pth
|
|
- Name: fcn_d6_r101-d16_769x769_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101-D16
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 311.53
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.06
|
|
mIoU(ms+flip): 79.58
|
|
Config: configs/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes_20210306_120016-e33adc4f.pth
|
|
- Name: fcn_d6_r50b-d16_512x1024_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-50b-D16
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 98.43
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 3.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.99
|
|
mIoU(ms+flip): 79.03
|
|
Config: configs/fcn/fcn_d6_r50b-d16_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_512x1024_80k_cityscapes/fcn_d6_r50b-d16_512x1024_80k_cityscapes_20210311_125550-6a0b62e9.pth
|
|
- Name: fcn_d6_r50b-d16_769x769_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-50b-D16
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 239.81
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 3.6
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.86
|
|
mIoU(ms+flip): 78.52
|
|
Config: configs/fcn/fcn_d6_r50b-d16_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_769x769_80k_cityscapes/fcn_d6_r50b-d16_769x769_80k_cityscapes_20210311_131012-d665f231.pth
|
|
- Name: fcn_d6_r101b-d16_512x1024_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101b-D16
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 118.2
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 4.3
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.72
|
|
mIoU(ms+flip): 79.53
|
|
Config: configs/fcn/fcn_d6_r101b-d16_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_512x1024_80k_cityscapes/fcn_d6_r101b-d16_512x1024_80k_cityscapes_20210311_144305-3f2eb5b4.pth
|
|
- Name: fcn_d6_r101b-d16_769x769_80k_cityscapes
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101b-D16
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 301.2
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 4.8
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.34
|
|
mIoU(ms+flip): 78.91
|
|
Config: configs/fcn/fcn_d6_r101b-d16_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_769x769_80k_cityscapes/fcn_d6_r101b-d16_769x769_80k_cityscapes_20210311_154527-c4d8bfbc.pth
|
|
- Name: fcn_r50-d8_512x512_80k_ade20k
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 42.57
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 8.5
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 35.94
|
|
mIoU(ms+flip): 37.94
|
|
Config: configs/fcn/fcn_r50-d8_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_80k_ade20k/fcn_r50-d8_512x512_80k_ade20k_20200614_144016-f8ac5082.pth
|
|
- Name: fcn_r101-d8_512x512_80k_ade20k
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 67.66
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 12.0
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 39.61
|
|
mIoU(ms+flip): 40.83
|
|
Config: configs/fcn/fcn_r101-d8_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_80k_ade20k/fcn_r101-d8_512x512_80k_ade20k_20200615_014143-bc1809f7.pth
|
|
- Name: fcn_r50-d8_512x512_160k_ade20k
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 36.1
|
|
mIoU(ms+flip): 38.08
|
|
Config: configs/fcn/fcn_r50-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_160k_ade20k/fcn_r50-d8_512x512_160k_ade20k_20200615_100713-4edbc3b4.pth
|
|
- Name: fcn_r101-d8_512x512_160k_ade20k
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 39.91
|
|
mIoU(ms+flip): 41.4
|
|
Config: configs/fcn/fcn_r101-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_160k_ade20k/fcn_r101-d8_512x512_160k_ade20k_20200615_105816-fd192bd5.pth
|
|
- Name: fcn_r50-d8_512x512_20k_voc12aug
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 20000
|
|
inference time (ms/im):
|
|
- value: 42.96
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 5.7
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 67.08
|
|
mIoU(ms+flip): 69.94
|
|
Config: configs/fcn/fcn_r50-d8_512x512_20k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_20k_voc12aug/fcn_r50-d8_512x512_20k_voc12aug_20200617_010715-52dc5306.pth
|
|
- Name: fcn_r101-d8_512x512_20k_voc12aug
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 20000
|
|
inference time (ms/im):
|
|
- value: 67.52
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 9.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 71.16
|
|
mIoU(ms+flip): 73.57
|
|
Config: configs/fcn/fcn_r101-d8_512x512_20k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_20k_voc12aug/fcn_r101-d8_512x512_20k_voc12aug_20200617_010842-0bb4e798.pth
|
|
- Name: fcn_r50-d8_512x512_40k_voc12aug
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 66.97
|
|
mIoU(ms+flip): 69.04
|
|
Config: configs/fcn/fcn_r50-d8_512x512_40k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_40k_voc12aug/fcn_r50-d8_512x512_40k_voc12aug_20200613_161222-5e2dbf40.pth
|
|
- Name: fcn_r101-d8_512x512_40k_voc12aug
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 69.91
|
|
mIoU(ms+flip): 72.38
|
|
Config: configs/fcn/fcn_r101-d8_512x512_40k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_40k_voc12aug/fcn_r101-d8_512x512_40k_voc12aug_20200613_161240-4c8bcefd.pth
|
|
- Name: fcn_r101-d8_480x480_40k_pascal_context
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (480,480)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 100.7
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (480,480)
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal Context
|
|
Metrics:
|
|
mIoU: 44.43
|
|
mIoU(ms+flip): 45.63
|
|
Config: configs/fcn/fcn_r101-d8_480x480_40k_pascal_context.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context_20210421_154757-b5e97937.pth
|
|
- Name: fcn_r101-d8_480x480_80k_pascal_context
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (480,480)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal Context
|
|
Metrics:
|
|
mIoU: 44.13
|
|
mIoU(ms+flip): 45.26
|
|
Config: configs/fcn/fcn_r101-d8_480x480_80k_pascal_context.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context_20210421_163310-4711813f.pth
|
|
- Name: fcn_r101-d8_480x480_40k_pascal_context_59
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (480,480)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal Context 59
|
|
Metrics:
|
|
mIoU: 48.42
|
|
mIoU(ms+flip): 50.4
|
|
Config: configs/fcn/fcn_r101-d8_480x480_40k_pascal_context_59.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59_20210415_230724-8cf83682.pth
|
|
- Name: fcn_r101-d8_480x480_80k_pascal_context_59
|
|
In Collection: FCN
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (480,480)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal Context 59
|
|
Metrics:
|
|
mIoU: 49.35
|
|
mIoU(ms+flip): 51.38
|
|
Config: configs/fcn/fcn_r101-d8_480x480_80k_pascal_context_59.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59_20210416_110804-9a6f2c94.pth
|