谢昕辰 124b87ce90
[Refactor] Refactor fileio (#2543)
## Motivation

Use the new fileio from mmengine
https://github.com/open-mmlab/mmengine/pull/533

## Modification

1. Use `mmengine.fileio` to repalce FileClient  in mmseg/datasets
2. Use `mmengine.fileio` to repalce FileClient in
mmseg/datasets/transforms
3. Use `mmengine.fileio` to repalce FileClient in mmseg/visualization

## BC-breaking (Optional)

we modify all the dataset configurations, so please use the latest config file.
2023-02-01 17:53:22 +08:00

76 lines
2.3 KiB
Python

# dataset settings
dataset_type = 'ChaseDB1Dataset'
data_root = 'data/CHASE_DB1'
img_scale = (960, 999)
crop_size = (128, 128)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(
type='RandomResize',
scale=img_scale,
ratio_range=(0.5, 2.0),
keep_ratio=True),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='PackSegInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=img_scale, keep_ratio=True),
# add loading annotation after ``Resize`` because ground truth
# does not need to do resize data transform
dict(type='LoadAnnotations'),
dict(type='PackSegInputs')
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
dict(type='LoadImageFromFile', backend_args=dict(backend='local')),
dict(
type='TestTimeAug',
transforms=[
[
dict(type='Resize', scale_factor=r, keep_ratio=True)
for r in img_ratios
],
[
dict(type='RandomFlip', prob=0., direction='horizontal'),
dict(type='RandomFlip', prob=1., direction='horizontal')
], [dict(type='LoadAnnotations')], [dict(type='PackSegInputs')]
])
]
train_dataloader = dict(
batch_size=4,
num_workers=4,
persistent_workers=True,
sampler=dict(type='InfiniteSampler', shuffle=True),
dataset=dict(
type='RepeatDataset',
times=40000,
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(
img_path='images/training',
seg_map_path='annotations/training'),
pipeline=train_pipeline)))
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(
img_path='images/validation',
seg_map_path='annotations/validation'),
pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(type='IoUMetric', iou_metrics=['mDice'])
test_evaluator = val_evaluator