mmsegmentation/configs/bisenetv1/bisenetv1.yml

235 lines
8.5 KiB
YAML

Collections:
- Name: BiSeNetV1
Metadata:
Training Data:
- Cityscapes
- COCO-Stuff 164k
Paper:
URL: https://arxiv.org/abs/1808.00897
Title: 'BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation'
README: configs/bisenetv1/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv1.py#L266
Version: v0.18.0
Converted From:
Code: https://github.com/ycszen/TorchSeg/tree/master/model/bisenet
Models:
- Name: bisenetv1_r18-d32_4xb4-160k_cityscapes-1024x1024
In Collection: BiSeNetV1
Metadata:
backbone: R-18-D32
crop size: (1024,1024)
lr schd: 160000
inference time (ms/im):
- value: 31.48
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (1024,1024)
Training Memory (GB): 5.69
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 74.44
mIoU(ms+flip): 77.05
Config: configs/bisenetv1/bisenetv1_r18-d32_4xb4-160k_cityscapes-1024x1024.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes_20210922_172239-c55e78e2.pth
- Name: bisenetv1_r18-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024
In Collection: BiSeNetV1
Metadata:
backbone: R-18-D32
crop size: (1024,1024)
lr schd: 160000
inference time (ms/im):
- value: 31.48
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (1024,1024)
Training Memory (GB): 5.69
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 74.37
mIoU(ms+flip): 76.91
Config: configs/bisenetv1/bisenetv1_r18-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210905_220251-8ba80eff.pth
- Name: bisenetv1_r18-d32-in1k-pre_4xb8-160k_cityscapes-1024x1024
In Collection: BiSeNetV1
Metadata:
backbone: R-18-D32
crop size: (1024,1024)
lr schd: 160000
inference time (ms/im):
- value: 31.48
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (1024,1024)
Training Memory (GB): 11.17
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 75.16
mIoU(ms+flip): 77.24
Config: configs/bisenetv1/bisenetv1_r18-d32-in1k-pre_4xb8-160k_cityscapes-1024x1024.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes/bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes_20210905_220322-bb8db75f.pth
- Name: bisenetv1_r50-d32_4xb4-160k_cityscapes-1024x1024
In Collection: BiSeNetV1
Metadata:
backbone: R-50-D32
crop size: (1024,1024)
lr schd: 160000
inference time (ms/im):
- value: 129.7
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (1024,1024)
Training Memory (GB): 15.39
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 76.92
mIoU(ms+flip): 78.87
Config: configs/bisenetv1/bisenetv1_r50-d32_4xb4-160k_cityscapes-1024x1024.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes_20210923_222639-7b28a2a6.pth
- Name: bisenetv1_r50-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024
In Collection: BiSeNetV1
Metadata:
backbone: R-50-D32
crop size: (1024,1024)
lr schd: 160000
inference time (ms/im):
- value: 129.7
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (1024,1024)
Training Memory (GB): 15.39
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.68
mIoU(ms+flip): 79.57
Config: configs/bisenetv1/bisenetv1_r50-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes/bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes_20210917_234628-8b304447.pth
- Name: bisenetv1_r18-d32_4xb4-160k_coco-stuff164k-512x512
In Collection: BiSeNetV1
Metadata:
backbone: R-18-D32
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: COCO-Stuff 164k
Metrics:
mIoU: 25.45
mIoU(ms+flip): 26.15
Config: configs/bisenetv1/bisenetv1_r18-d32_4xb4-160k_coco-stuff164k-512x512.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211022_054328-046aa2f2.pth
- Name: bisenetv1_r18-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512
In Collection: BiSeNetV1
Metadata:
backbone: R-18-D32
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 13.47
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 6.33
Results:
- Task: Semantic Segmentation
Dataset: COCO-Stuff 164k
Metrics:
mIoU: 28.55
mIoU(ms+flip): 29.26
Config: configs/bisenetv1/bisenetv1_r18-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r18-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211023_013100-f700dbf7.pth
- Name: bisenetv1_r50-d32_4xb4-160k_coco-stuff164k-512x512
In Collection: BiSeNetV1
Metadata:
backbone: R-50-D32
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: COCO-Stuff 164k
Metrics:
mIoU: 29.82
mIoU(ms+flip): 30.33
Config: configs/bisenetv1/bisenetv1_r50-d32_4xb4-160k_coco-stuff164k-512x512.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_040616-d2bb0df4.pth
- Name: bisenetv1_r50-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512
In Collection: BiSeNetV1
Metadata:
backbone: R-50-D32
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 30.67
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 9.28
Results:
- Task: Semantic Segmentation
Dataset: COCO-Stuff 164k
Metrics:
mIoU: 34.88
mIoU(ms+flip): 35.37
Config: configs/bisenetv1/bisenetv1_r50-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r50-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_181932-66747911.pth
- Name: bisenetv1_r50-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512
In Collection: BiSeNetV1
Metadata:
backbone: R-101-D32
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: COCO-Stuff 164k
Metrics:
mIoU: 31.14
mIoU(ms+flip): 31.76
Config: configs/bisenetv1/bisenetv1_r50-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211102_164147-c6b32c3b.pth
- Name: bisenetv1_r101-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512
In Collection: BiSeNetV1
Metadata:
backbone: R-101-D32
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 39.6
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 10.36
Results:
- Task: Semantic Segmentation
Dataset: COCO-Stuff 164k
Metrics:
mIoU: 37.38
mIoU(ms+flip): 37.99
Config: configs/bisenetv1/bisenetv1_r101-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv1/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k/bisenetv1_r101-d32_in1k-pre_lr5e-3_4x4_512x512_160k_coco-stuff164k_20211101_225220-28c8f092.pth