229 lines
7.2 KiB
YAML
229 lines
7.2 KiB
YAML
Collections:
|
|
- Name: DNLNet
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- ADE20K
|
|
Paper:
|
|
URL: https://arxiv.org/abs/2006.06668
|
|
Title: Disentangled Non-Local Neural Networks
|
|
README: configs/dnlnet/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88
|
|
Version: v0.17.0
|
|
Converted From:
|
|
Code: https://github.com/yinmh17/DNL-Semantic-Segmentation
|
|
Models:
|
|
- Name: dnl_r50-d8_512x1024_40k_cityscapes
|
|
In Collection: DNLNet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 390.62
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 7.3
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.61
|
|
Config: configs/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes/dnl_r50-d8_512x1024_40k_cityscapes_20200904_233629-53d4ea93.pth
|
|
- Name: dnl_r101-d8_512x1024_40k_cityscapes
|
|
In Collection: DNLNet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 510.2
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 10.9
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.31
|
|
Config: configs/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes/dnl_r101-d8_512x1024_40k_cityscapes_20200904_233629-9928ffef.pth
|
|
- Name: dnl_r50-d8_769x769_40k_cityscapes
|
|
In Collection: DNLNet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (769,769)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 666.67
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 9.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.44
|
|
mIoU(ms+flip): 80.27
|
|
Config: configs/dnlnet/dnl_r50-d8_769x769_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_40k_cityscapes/dnl_r50-d8_769x769_40k_cityscapes_20200820_232206-0f283785.pth
|
|
- Name: dnl_r101-d8_769x769_40k_cityscapes
|
|
In Collection: DNLNet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (769,769)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 980.39
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 12.6
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.39
|
|
mIoU(ms+flip): 77.77
|
|
Config: configs/dnlnet/dnl_r101-d8_769x769_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_40k_cityscapes/dnl_r101-d8_769x769_40k_cityscapes_20200820_171256-76c596df.pth
|
|
- Name: dnl_r50-d8_512x1024_80k_cityscapes
|
|
In Collection: DNLNet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.33
|
|
Config: configs/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes/dnl_r50-d8_512x1024_80k_cityscapes_20200904_233629-58b2f778.pth
|
|
- Name: dnl_r101-d8_512x1024_80k_cityscapes
|
|
In Collection: DNLNet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.41
|
|
Config: configs/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes/dnl_r101-d8_512x1024_80k_cityscapes_20200904_233629-758e2dd4.pth
|
|
- Name: dnl_r50-d8_769x769_80k_cityscapes
|
|
In Collection: DNLNet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.36
|
|
mIoU(ms+flip): 80.7
|
|
Config: configs/dnlnet/dnl_r50-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_80k_cityscapes/dnl_r50-d8_769x769_80k_cityscapes_20200820_011925-366bc4c7.pth
|
|
- Name: dnl_r101-d8_769x769_80k_cityscapes
|
|
In Collection: DNLNet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.41
|
|
mIoU(ms+flip): 80.68
|
|
Config: configs/dnlnet/dnl_r101-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_80k_cityscapes/dnl_r101-d8_769x769_80k_cityscapes_20200821_051111-95ff84ab.pth
|
|
- Name: dnl_r50-d8_512x512_80k_ade20k
|
|
In Collection: DNLNet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 48.4
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 8.8
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 41.76
|
|
mIoU(ms+flip): 42.99
|
|
Config: configs/dnlnet/dnl_r50-d8_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_80k_ade20k/dnl_r50-d8_512x512_80k_ade20k_20200826_183354-1cf6e0c1.pth
|
|
- Name: dnl_r101-d8_512x512_80k_ade20k
|
|
In Collection: DNLNet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 79.74
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 12.8
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 43.76
|
|
mIoU(ms+flip): 44.91
|
|
Config: configs/dnlnet/dnl_r101-d8_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_80k_ade20k/dnl_r101-d8_512x512_80k_ade20k_20200826_183354-d820d6ea.pth
|
|
- Name: dnl_r50-d8_512x512_160k_ade20k
|
|
In Collection: DNLNet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 41.87
|
|
mIoU(ms+flip): 43.01
|
|
Config: configs/dnlnet/dnl_r50-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_160k_ade20k/dnl_r50-d8_512x512_160k_ade20k_20200826_183350-37837798.pth
|
|
- Name: dnl_r101-d8_512x512_160k_ade20k
|
|
In Collection: DNLNet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 44.25
|
|
mIoU(ms+flip): 45.78
|
|
Config: configs/dnlnet/dnl_r101-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_160k_ade20k/dnl_r101-d8_512x512_160k_ade20k_20200826_183350-ed522c61.pth
|