170 lines
5.5 KiB
YAML
170 lines
5.5 KiB
YAML
Collections:
|
|
- Name: KNet
|
|
Metadata:
|
|
Training Data:
|
|
- ADE20K
|
|
Paper:
|
|
URL: https://arxiv.org/abs/2106.14855
|
|
Title: 'K-Net: Towards Unified Image Segmentation'
|
|
README: configs/knet/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392
|
|
Version: v0.23.0
|
|
Converted From:
|
|
Code: https://github.com/ZwwWayne/K-Net/
|
|
Models:
|
|
- Name: knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k
|
|
In Collection: KNet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 51.98
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 7.01
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 43.6
|
|
mIoU(ms+flip): 45.12
|
|
Config: configs/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751-abcab920.pth
|
|
- Name: knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k
|
|
In Collection: KNet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 49.9
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 6.98
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 44.18
|
|
mIoU(ms+flip): 45.58
|
|
Config: configs/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634-d2c72240.pth
|
|
- Name: knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k
|
|
In Collection: KNet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 82.64
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 7.42
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 45.06
|
|
mIoU(ms+flip): 46.11
|
|
Config: configs/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642-00c8fbeb.pth
|
|
- Name: knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k
|
|
In Collection: KNet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 58.45
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 7.34
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 43.45
|
|
mIoU(ms+flip): 44.07
|
|
Config: configs/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657-215753b0.pth
|
|
- Name: knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k
|
|
In Collection: KNet
|
|
Metadata:
|
|
backbone: Swin-T
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 64.27
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 7.57
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 45.84
|
|
mIoU(ms+flip): 46.27
|
|
Config: configs/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059-7545e1dc.pth
|
|
- Name: knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k
|
|
In Collection: KNet
|
|
Metadata:
|
|
backbone: Swin-L
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 120.63
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 13.5
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 52.05
|
|
mIoU(ms+flip): 53.24
|
|
Config: configs/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559-d8da9a90.pth
|
|
- Name: knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k
|
|
In Collection: KNet
|
|
Metadata:
|
|
backbone: Swin-L
|
|
crop size: (640,640)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 120.63
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (640,640)
|
|
Training Memory (GB): 13.54
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 52.21
|
|
mIoU(ms+flip): 53.34
|
|
Config: configs/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747-8787fc71.pth
|