mmsegmentation/configs/beit/upernet_beit-base_8x2_640x640_160k_ade20k.py
FangjianLin 24f1563571
[Feature] Add BEiT backbone (#1404)
* [Feature] Add BEiT backbone

* fix

* fix

* fix

* fix

* add readme

* fix

* fix

* fix

* fix

* fix

* add link

* fix memory

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix test_beit.py

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix
2022-03-30 15:25:10 +08:00

31 lines
821 B
Python

_base_ = [
'../_base_/models/upernet_beit.py', '../_base_/datasets/ade20k_640x640.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
]
model = dict(
pretrained='pretrain/beit_base_patch16_224_pt22k_ft22k.pth',
test_cfg=dict(mode='slide', crop_size=(640, 640), stride=(426, 426)))
optimizer = dict(
_delete_=True,
type='AdamW',
lr=3e-5,
betas=(0.9, 0.999),
weight_decay=0.05,
constructor='LayerDecayOptimizerConstructor',
paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.9))
lr_config = dict(
_delete_=True,
policy='poly',
warmup='linear',
warmup_iters=1500,
warmup_ratio=1e-6,
power=1.0,
min_lr=0.0,
by_epoch=False)
# By default, models are trained on 8 GPUs with 2 images per GPU
data = dict(samples_per_gpu=2)