mmsegmentation/docs/en/dataset_prepare.md

630 lines
24 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

<!-- #region -->
## Prepare datasets
It is recommended to symlink the dataset root to `$MMSEGMENTATION/data`.
If your folder structure is different, you may need to change the corresponding paths in config files.
```none
mmsegmentation
├── mmseg
├── tools
├── configs
├── data
│ ├── cityscapes
│ │ ├── leftImg8bit
│ │ │ ├── train
│ │ │ ├── val
│ │ ├── gtFine
│ │ │ ├── train
│ │ │ ├── val
│ ├── VOCdevkit
│ │ ├── VOC2012
│ │ │ ├── JPEGImages
│ │ │ ├── SegmentationClass
│ │ │ ├── ImageSets
│ │ │ │ ├── Segmentation
│ │ ├── VOC2010
│ │ │ ├── JPEGImages
│ │ │ ├── SegmentationClassContext
│ │ │ ├── ImageSets
│ │ │ │ ├── SegmentationContext
│ │ │ │ │ ├── train.txt
│ │ │ │ │ ├── val.txt
│ │ │ ├── trainval_merged.json
│ │ ├── VOCaug
│ │ │ ├── dataset
│ │ │ │ ├── cls
│ ├── ade
│ │ ├── ADEChallengeData2016
│ │ │ ├── annotations
│ │ │ │ ├── training
│ │ │ │ ├── validation
│ │ │ ├── images
│ │ │ │ ├── training
│ │ │ │ ├── validation
│ ├── coco_stuff10k
│ │ ├── images
│ │ │ ├── train2014
│ │ │ ├── test2014
│ │ ├── annotations
│ │ │ ├── train2014
│ │ │ ├── test2014
│ │ ├── imagesLists
│ │ │ ├── train.txt
│ │ │ ├── test.txt
│ │ │ ├── all.txt
│ ├── coco_stuff164k
│ │ ├── images
│ │ │ ├── train2017
│ │ │ ├── val2017
│ │ ├── annotations
│ │ │ ├── train2017
│ │ │ ├── val2017
│ ├── CHASE_DB1
│ │ ├── images
│ │ │ ├── training
│ │ │ ├── validation
│ │ ├── annotations
│ │ │ ├── training
│ │ │ ├── validation
│ ├── DRIVE
│ │ ├── images
│ │ │ ├── training
│ │ │ ├── validation
│ │ ├── annotations
│ │ │ ├── training
│ │ │ ├── validation
│ ├── HRF
│ │ ├── images
│ │ │ ├── training
│ │ │ ├── validation
│ │ ├── annotations
│ │ │ ├── training
│ │ │ ├── validation
│ ├── STARE
│ │ ├── images
│ │ │ ├── training
│ │ │ ├── validation
│ │ ├── annotations
│ │ │ ├── training
│ │ │ ├── validation
| ├── dark_zurich
| │   ├── gps
| │   │   ├── val
| │   │   └── val_ref
| │   ├── gt
| │   │   └── val
| │   ├── LICENSE.txt
| │   ├── lists_file_names
| │   │   ├── val_filenames.txt
| │   │   └── val_ref_filenames.txt
| │   ├── README.md
| │   └── rgb_anon
| │   | ├── val
| │   | └── val_ref
| ├── NighttimeDrivingTest
| | ├── gtCoarse_daytime_trainvaltest
| | │   └── test
| | │   └── night
| | └── leftImg8bit
| | | └── test
| | | └── night
│ ├── loveDA
│ │ ├── img_dir
│ │ │ ├── train
│ │ │ ├── val
│ │ │ ├── test
│ │ ├── ann_dir
│ │ │ ├── train
│ │ │ ├── val
│ ├── potsdam
│ │ ├── img_dir
│ │ │ ├── train
│ │ │ ├── val
│ │ ├── ann_dir
│ │ │ ├── train
│ │ │ ├── val
│ ├── vaihingen
│ │ ├── img_dir
│ │ │ ├── train
│ │ │ ├── val
│ │ ├── ann_dir
│ │ │ ├── train
│ │ │ ├── val
│ ├── iSAID
│ │ ├── img_dir
│ │ │ ├── train
│ │ │ ├── val
│ │ │ ├── test
│ │ ├── ann_dir
│ │ │ ├── train
│ │ │ ├── val
│ ├── occlusion-aware-face-dataset
│ │ ├── train.txt
│ │ ├── NatOcc_hand_sot
│ │ │ ├── img
│ │ │ ├── mask
│ │ ├── NatOcc_object
│ │ │ ├── img
│ │ │ ├── mask
│ │ ├── RandOcc
│ │ │ ├── img
│ │ │ ├── mask
│ │ ├── RealOcc
│ │ │ ├── img
│ │ │ ├── mask
│ │ │ ├── split
│ ├── ImageNetS
│ │ ├── ImageNetS919
│ │ │ ├── train-semi
│ │ │ ├── train-semi-segmentation
│ │ │ ├── validation
│ │ │ ├── validation-segmentation
│ │ │ ├── test
│ │ ├── ImageNetS300
│ │ │ ├── train-semi
│ │ │ ├── train-semi-segmentation
│ │ │ ├── validation
│ │ │ ├── validation-segmentation
│ │ │ ├── test
│ │ ├── ImageNetS50
│ │ │ ├── train-semi
│ │ │ ├── train-semi-segmentation
│ │ │ ├── validation
│ │ │ ├── validation-segmentation
│ │ │ ├── test
```
### Cityscapes
The data could be found [here](https://www.cityscapes-dataset.com/downloads/) after registration.
By convention, `**labelTrainIds.png` are used for cityscapes training.
We provided a [scripts](https://github.com/open-mmlab/mmsegmentation/blob/master/tools/convert_datasets/cityscapes.py) based on [cityscapesscripts](https://github.com/mcordts/cityscapesScripts)
to generate `**labelTrainIds.png`.
```shell
# --nproc means 8 process for conversion, which could be omitted as well.
python tools/convert_datasets/cityscapes.py data/cityscapes --nproc 8
```
### Pascal VOC
Pascal VOC 2012 could be downloaded from [here](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar).
Beside, most recent works on Pascal VOC dataset usually exploit extra augmentation data, which could be found [here](http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz).
If you would like to use augmented VOC dataset, please run following command to convert augmentation annotations into proper format.
```shell
# --nproc means 8 process for conversion, which could be omitted as well.
python tools/convert_datasets/voc_aug.py data/VOCdevkit data/VOCdevkit/VOCaug --nproc 8
```
Please refer to [concat dataset](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/tutorials/customize_datasets.md#concatenate-dataset) for details about how to concatenate them and train them together.
### ADE20K
The training and validation set of ADE20K could be download from this [link](http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip).
We may also download test set from [here](http://data.csail.mit.edu/places/ADEchallenge/release_test.zip).
### Pascal Context
The training and validation set of Pascal Context could be download from [here](http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar). You may also download test set from [here](http://host.robots.ox.ac.uk:8080/eval/downloads/VOC2010test.tar) after registration.
To split the training and validation set from original dataset, you may download trainval_merged.json from [here](https://codalabuser.blob.core.windows.net/public/trainval_merged.json).
If you would like to use Pascal Context dataset, please install [Detail](https://github.com/zhanghang1989/detail-api) and then run the following command to convert annotations into proper format.
```shell
python tools/convert_datasets/pascal_context.py data/VOCdevkit data/VOCdevkit/VOC2010/trainval_merged.json
```
### COCO Stuff 10k
The data could be downloaded [here](http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/cocostuff-10k-v1.1.zip) by wget.
For COCO Stuff 10k dataset, please run the following commands to download and convert the dataset.
```shell
# download
mkdir coco_stuff10k && cd coco_stuff10k
wget http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/cocostuff-10k-v1.1.zip
# unzip
unzip cocostuff-10k-v1.1.zip
# --nproc means 8 process for conversion, which could be omitted as well.
python tools/convert_datasets/coco_stuff10k.py /path/to/coco_stuff10k --nproc 8
```
By convention, mask labels in `/path/to/coco_stuff164k/annotations/*2014/*_labelTrainIds.png` are used for COCO Stuff 10k training and testing.
### COCO Stuff 164k
For COCO Stuff 164k dataset, please run the following commands to download and convert the augmented dataset.
```shell
# download
mkdir coco_stuff164k && cd coco_stuff164k
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip
# unzip
unzip train2017.zip -d images/
unzip val2017.zip -d images/
unzip stuffthingmaps_trainval2017.zip -d annotations/
# --nproc means 8 process for conversion, which could be omitted as well.
python tools/convert_datasets/coco_stuff164k.py /path/to/coco_stuff164k --nproc 8
```
By convention, mask labels in `/path/to/coco_stuff164k/annotations/*2017/*_labelTrainIds.png` are used for COCO Stuff 164k training and testing.
The details of this dataset could be found at [here](https://github.com/nightrome/cocostuff#downloads).
### CHASE DB1
The training and validation set of CHASE DB1 could be download from [here](https://staffnet.kingston.ac.uk/~ku15565/CHASE_DB1/assets/CHASEDB1.zip).
To convert CHASE DB1 dataset to MMSegmentation format, you should run the following command:
```shell
python tools/convert_datasets/chase_db1.py /path/to/CHASEDB1.zip
```
The script will make directory structure automatically.
### DRIVE
The training and validation set of DRIVE could be download from [here](https://drive.grand-challenge.org/). Before that, you should register an account. Currently '1st_manual' is not provided officially.
To convert DRIVE dataset to MMSegmentation format, you should run the following command:
```shell
python tools/convert_datasets/drive.py /path/to/training.zip /path/to/test.zip
```
The script will make directory structure automatically.
### HRF
First, download [healthy.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/healthy.zip), [glaucoma.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/glaucoma.zip), [diabetic_retinopathy.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/diabetic_retinopathy.zip), [healthy_manualsegm.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/healthy_manualsegm.zip), [glaucoma_manualsegm.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/glaucoma_manualsegm.zip) and [diabetic_retinopathy_manualsegm.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/diabetic_retinopathy_manualsegm.zip).
To convert HRF dataset to MMSegmentation format, you should run the following command:
```shell
python tools/convert_datasets/hrf.py /path/to/healthy.zip /path/to/healthy_manualsegm.zip /path/to/glaucoma.zip /path/to/glaucoma_manualsegm.zip /path/to/diabetic_retinopathy.zip /path/to/diabetic_retinopathy_manualsegm.zip
```
The script will make directory structure automatically.
### STARE
First, download [stare-images.tar](http://cecas.clemson.edu/~ahoover/stare/probing/stare-images.tar), [labels-ah.tar](http://cecas.clemson.edu/~ahoover/stare/probing/labels-ah.tar) and [labels-vk.tar](http://cecas.clemson.edu/~ahoover/stare/probing/labels-vk.tar).
To convert STARE dataset to MMSegmentation format, you should run the following command:
```shell
python tools/convert_datasets/stare.py /path/to/stare-images.tar /path/to/labels-ah.tar /path/to/labels-vk.tar
```
The script will make directory structure automatically.
### Dark Zurich
Since we only support test models on this dataset, you may only download [the validation set](https://data.vision.ee.ethz.ch/csakarid/shared/GCMA_UIoU/Dark_Zurich_val_anon.zip).
### Nighttime Driving
Since we only support test models on this dataset, you may only download [the test set](http://data.vision.ee.ethz.ch/daid/NighttimeDriving/NighttimeDrivingTest.zip).
### LoveDA
The data could be downloaded from Google Drive [here](https://drive.google.com/drive/folders/1ibYV0qwn4yuuh068Rnc-w4tPi0U0c-ti?usp=sharing).
Or it can be downloaded from [zenodo](https://zenodo.org/record/5706578#.YZvN7SYRXdF), you should run the following command:
```shell
# Download Train.zip
wget https://zenodo.org/record/5706578/files/Train.zip
# Download Val.zip
wget https://zenodo.org/record/5706578/files/Val.zip
# Download Test.zip
wget https://zenodo.org/record/5706578/files/Test.zip
```
For LoveDA dataset, please run the following command to download and re-organize the dataset.
```shell
python tools/convert_datasets/loveda.py /path/to/loveDA
```
Using trained model to predict test set of LoveDA and submit it to server can be found [here](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/inference.md).
More details about LoveDA can be found [here](https://github.com/Junjue-Wang/LoveDA).
### ISPRS Potsdam
The [Potsdam](https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-potsdam/)
dataset is for urban semantic segmentation used in the 2D Semantic Labeling Contest - Potsdam.
The dataset can be requested at the challenge [homepage](https://www2.isprs.org/commissions/comm2/wg4/benchmark/data-request-form/).
The '2_Ortho_RGB.zip' and '5_Labels_all_noBoundary.zip' are required.
For Potsdam dataset, please run the following command to download and re-organize the dataset.
```shell
python tools/convert_datasets/potsdam.py /path/to/potsdam
```
In our default setting, it will generate 3456 images for training and 2016 images for validation.
### ISPRS Vaihingen
The [Vaihingen](https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-label-vaihingen/)
dataset is for urban semantic segmentation used in the 2D Semantic Labeling Contest - Vaihingen.
The dataset can be requested at the challenge [homepage](https://www2.isprs.org/commissions/comm2/wg4/benchmark/data-request-form/).
The 'ISPRS_semantic_labeling_Vaihingen.zip' and 'ISPRS_semantic_labeling_Vaihingen_ground_truth_eroded_COMPLETE.zip' are required.
For Vaihingen dataset, please run the following command to download and re-organize the dataset.
```shell
python tools/convert_datasets/vaihingen.py /path/to/vaihingen
```
In our default setting (`clip_size` =512, `stride_size`=256), it will generate 344 images for training and 398 images for validation.
### iSAID
The data images could be download from [DOTA-v1.0](https://captain-whu.github.io/DOTA/dataset.html) (train/val/test)
The data annotations could be download from [iSAID](https://captain-whu.github.io/iSAID/dataset.html) (train/val)
The dataset is a Large-scale Dataset for Instance Segmentation (also have segmantic segmentation) in Aerial Images.
You may need to follow the following structure for dataset preparation after downloading iSAID dataset.
```
│ ├── iSAID
│ │ ├── train
│ │ │ ├── images
│ │ │ │ ├── part1.zip
│ │ │ │ ├── part2.zip
│ │ │ │ ├── part3.zip
│ │ │ ├── Semantic_masks
│ │ │ │ ├── images.zip
│ │ ├── val
│ │ │ ├── images
│ │ │ │ ├── part1.zip
│ │ │ ├── Semantic_masks
│ │ │ │ ├── images.zip
│ │ ├── test
│ │ │ ├── images
│ │ │ │ ├── part1.zip
│ │ │ │ ├── part2.zip
```
```shell
python tools/convert_datasets/isaid.py /path/to/iSAID
```
In our default setting (`patch_width`=896, `patch_height`=896, `overlap_area`=384), it will generate 33978 images for training and 11644 images for validation.
### Delving into High-Quality Synthetic Face Occlusion Segmentation Datasets
The dataset is generated by two techniques, Naturalistic occlusion generation, Random occlusion generation. you must install face-occlusion-generation and dataset. see more guide in https://github.com/kennyvoo/face-occlusion-generation.git
## Dataset Preparation
step 1
Create a folder for data generation materials on mmsegmentation folder.
```shell
mkdir data_materials
```
step 2
Please download the masks (11k-hands_mask.7z,CelebAMask-HQ-masks_corrected.7z) from this [drive](https://drive.google.com/drive/folders/15nZETWlGMdcKY6aHbchRsWkUI42KTNs5?usp=sharing)
Please download the images from [CelebAMask-HQ](https://github.com/switchablenorms/CelebAMask-HQ), [11k Hands.zip](https://sites.google.com/view/11khands) and [dtd-r1.0.1.tar.gz](https://www.robots.ox.ac.uk/~vgg/data/dtd/).
step 3
Download a upsampled COCO objects images and masks (coco_object.7z). files can be found in this [drive](https://drive.google.com/drive/folders/15nZETWlGMdcKY6aHbchRsWkUI42KTNs5?usp=sharing).
Download CelebAMask-HQ and 11k Hands images split txt files. (11k_hands_sample.txt, CelebAMask-HQ-WO-train.txt) found in [drive](https://drive.google.com/drive/folders/15nZETWlGMdcKY6aHbchRsWkUI42KTNs5?usp=sharing).
download file to ./data_materials
```none
CelebAMask-HQ.zip
CelebAMask-HQ-masks_corrected.7z
CelebAMask-HQ-WO-train.txt
RealOcc.7z
RealOcc-Wild.7z
11k-hands_mask.7z
11k Hands.zip
11k_hands_sample.txt
coco_object.7z
dtd-r1.0.1.tar.gz
```
______________________________________________________________________
```bash
apt-get install p7zip-full
cd data_materials
#make occlusion-aware-face-dataset folder
mkdir path-to-mmsegmentaion/data/occlusion-aware-face-dataset
#extract celebAMask-HQ and split by train-set
unzip CelebAMask-HQ.zip
7za x CelebAMask-HQ-masks_corrected.7z -o./CelebAMask-HQ
#copy training data to train-image-folder
rsync -a ./CelebAMask-HQ/CelebA-HQ-img/ --files-from=./CelebAMask-HQ-WO-train.txt ./CelebAMask-HQ-WO-Train_img
#create a file-name txt file for copying mask
basename -s .jpg ./CelebAMask-HQ-WO-Train_img/* > train.txt
#add .png to file-name txt file
xargs -n 1 -i echo {}.png < train.txt > mask_train.txt
#copy training data to train-mask-folder
rsync -a ./CelebAMask-HQ/CelebAMask-HQ-masks_corrected/ --files-from=./mask_train.txt ./CelebAMask-HQ-WO-Train_mask
mv train.txt ../data/occlusion-aware-face-dataset
#extract DTD
tar -zxvf dtd-r1.0.1.tar.gz
mv dtd DTD
#extract hands dataset and split by 200 samples
7za x 11k-hands_masks.7z -o.
unzip Hands.zip
rsync -a ./Hands/ --files-from=./11k_hands_sample.txt ./11k-hands_img
#extract upscaled coco object
7za x coco_object.7z -o.
mv coco_object/* .
#extract validation set
7za x RealOcc.7z -o../data/occlusion-aware-face-dataset
```
**Dataset material Organization:**
```none
├── data_materials
│ ├── CelebAMask-HQ-WO-Train_img
│ │ ├── {image}.jpg
│ ├── CelebAMask-HQ-WO-Train_mask
│ │ ├── {mask}.png
│ ├── DTD
│ │ ├── images
│ │ │ ├── {classA}
│ │ │ │ ├── {image}.jpg
│ │ │ ├── {classB}
│ │ │ │ ├── {image}.jpg
│ ├── 11k-hands_img
│ │ ├── {image}.jpg
│ ├── 11k-hands_mask
│ │ ├── {mask}.png
│ ├── object_image_sr
│ │ ├── {image}.jpg
│ ├── object_mask_x4
│ │ ├── {mask}.png
```
## Data Generation
```bash
git clone https://github.com/kennyvoo/face-occlusion-generation.git
cd face_occlusion-generation
```
Example script to generate NatOcc hand dataset
```bash
CUDA_VISIBLE_DEVICES=0 NUM_WORKERS=4 python main.py \
--config ./configs/natocc_hand.yaml \
--opts OUTPUT_PATH "path/to/mmsegmentation/data/occlusion-aware-face-dataset/NatOcc_hand_sot"\
AUGMENTATION.SOT True \
SOURCE_DATASET.IMG_DIR "path/to/data_materials/CelebAMask-HQ-WO-Train_img" \
SOURCE_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_mask" \
OCCLUDER_DATASET.IMG_DIR "path/to/mmsegmentation/data_materials/11k-hands_img" \
OCCLUDER_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/11k-hands_masks"
```
Example script to generate NatOcc object dataset
```bash
CUDA_VISIBLE_DEVICES=0 NUM_WORKERS=4 python main.py \
--config ./configs/natocc_objects.yaml \
--opts OUTPUT_PATH "path/to/mmsegmentation/data/occlusion-aware-face-dataset/NatOcc_object" \
SOURCE_DATASET.IMG_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_img" \
SOURCE_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_mask" \
OCCLUDER_DATASET.IMG_DIR "path/to/mmsegmentation/data_materials/object_image_sr" \
OCCLUDER_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/object_mask_x4"
```
Example script to generate RandOcc dataset
```bash
CUDA_VISIBLE_DEVICES=0 NUM_WORKERS=4 python main.py \
--config ./configs/randocc.yaml \
--opts OUTPUT_PATH "path/to/mmsegmentation/data/occlusion-aware-face-dataset/RandOcc" \
SOURCE_DATASET.IMG_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_img/" \
SOURCE_DATASET.MASK_DIR "path/to/mmsegmentation/data_materials/CelebAMask-HQ-WO-Train_mask" \
OCCLUDER_DATASET.IMG_DIR "path/to/jw93/mmsegmentation/data_materials/DTD/images"
```
**Dataset Organization:**
```none
├── data
│ ├── occlusion-aware-face-dataset
│ │ ├── train.txt
│ │ ├── NatOcc_hand_sot
│ │ │ ├── img
│ │ │ │ ├── {image}.jpg
│ │ │ ├── mask
│ │ │ │ ├── {mask}.png
│ │ ├── NatOcc_object
│ │ │ ├── img
│ │ │ │ ├── {image}.jpg
│ │ │ ├── mask
│ │ │ │ ├── {mask}.png
│ │ ├── RandOcc
│ │ │ ├── img
│ │ │ │ ├── {image}.jpg
│ │ │ ├── mask
│ │ │ │ ├── {mask}.png
│ │ ├── RealOcc
│ │ │ ├── img
│ │ │ │ ├── {image}.jpg
│ │ │ ├── mask
│ │ │ │ ├── {mask}.png
│ │ │ ├── split
│ │ │ │ ├── val.txt
```
<!-- #endregion -->
```python
```
### ImageNetS
The ImageNet-S dataset is for [Large-scale unsupervised/semi-supervised semantic segmentation](https://arxiv.org/abs/2106.03149).
The images and annotations are available on [ImageNet-S](https://github.com/LUSSeg/ImageNet-S#imagenet-s-dataset-preparation).
```
│ ├── ImageNetS
│ │ ├── ImageNetS919
│ │ │ ├── train-semi
│ │ │ ├── train-semi-segmentation
│ │ │ ├── validation
│ │ │ ├── validation-segmentation
│ │ │ ├── test
│ │ ├── ImageNetS300
│ │ │ ├── train-semi
│ │ │ ├── train-semi-segmentation
│ │ │ ├── validation
│ │ │ ├── validation-segmentation
│ │ │ ├── test
│ │ ├── ImageNetS50
│ │ │ ├── train-semi
│ │ │ ├── train-semi-segmentation
│ │ │ ├── validation
│ │ │ ├── validation-segmentation
│ │ │ ├── test
```