mmsegmentation/tests/test_datasets/test_transform.py

1152 lines
40 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os.path as osp
import mmcv
import numpy as np
import pytest
from mmengine.registry import init_default_scope
from PIL import Image
from mmseg.datasets.transforms import * # noqa
from mmseg.datasets.transforms import (LoadBiomedicalData,
LoadBiomedicalImageFromFile,
PhotoMetricDistortion, RandomCrop)
from mmseg.registry import TRANSFORMS
init_default_scope('mmseg')
def test_resize():
# Test `Resize`, `RandomResize` and `RandomChoiceResize` from
# MMCV transform. Noted: `RandomResize` has args `scales` but
# `Resize` and `RandomResize` has args `scale`.
transform = dict(type='Resize', scale=(1333, 800), keep_ratio=True)
resize_module = TRANSFORMS.build(transform)
results = dict()
# (288, 512, 3)
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../data/color.jpg'), 'color')
results['img'] = img
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
# Set initial values for default meta_keys
results['pad_shape'] = img.shape
results['scale_factor'] = 1.0
resized_results = resize_module(results.copy())
# img_shape = results['img'].shape[:2] in ``MMCV resize`` function
# so right now it is (750, 1333) rather than (750, 1333, 3)
assert resized_results['img_shape'] == (750, 1333)
# test keep_ratio=False
transform = dict(
type='RandomResize',
scale=(1280, 800),
ratio_range=(1.0, 1.0),
resize_type='Resize',
keep_ratio=False)
resize_module = TRANSFORMS.build(transform)
resized_results = resize_module(results.copy())
assert resized_results['img_shape'] == (800, 1280)
# test `RandomChoiceResize`, which in older mmsegmentation
# `Resize` is multiscale_mode='range'
transform = dict(type='RandomResize', scale=[(1333, 400), (1333, 1200)])
resize_module = TRANSFORMS.build(transform)
resized_results = resize_module(results.copy())
assert max(resized_results['img_shape'][:2]) <= 1333
assert min(resized_results['img_shape'][:2]) >= 400
assert min(resized_results['img_shape'][:2]) <= 1200
# test RandomChoiceResize, which in older mmsegmentation
# `Resize` is multiscale_mode='value'
transform = dict(
type='RandomChoiceResize',
scales=[(1333, 800), (1333, 400)],
resize_type='Resize',
keep_ratio=False)
resize_module = TRANSFORMS.build(transform)
resized_results = resize_module(results.copy())
assert resized_results['img_shape'] in [(800, 1333), (400, 1333)]
transform = dict(type='Resize', scale_factor=(0.9, 1.1), keep_ratio=True)
resize_module = TRANSFORMS.build(transform)
resized_results = resize_module(results.copy())
assert max(resized_results['img_shape'][:2]) <= 1333 * 1.1
# test RandomChoiceResize, which `resize_type` is `ResizeShortestEdge`
transform = dict(
type='RandomChoiceResize',
scales=[128, 256, 512],
resize_type='ResizeShortestEdge',
max_size=1333)
resize_module = TRANSFORMS.build(transform)
resized_results = resize_module(results.copy())
assert resized_results['img_shape'][0] in [128, 256, 512]
transform = dict(
type='RandomChoiceResize',
scales=[512],
resize_type='ResizeShortestEdge',
max_size=512)
resize_module = TRANSFORMS.build(transform)
resized_results = resize_module(results.copy())
assert resized_results['img_shape'][1] == 512
transform = dict(
type='RandomChoiceResize',
scales=[(128, 256), (256, 512), (512, 1024)],
resize_type='ResizeShortestEdge',
max_size=1333)
resize_module = TRANSFORMS.build(transform)
resized_results = resize_module(results.copy())
assert resized_results['img_shape'][0] in [128, 256, 512]
# test scale=None and scale_factor is tuple.
# img shape: (288, 512, 3)
transform = dict(
type='Resize', scale=None, scale_factor=(0.5, 2.0), keep_ratio=True)
resize_module = TRANSFORMS.build(transform)
resized_results = resize_module(results.copy())
assert int(288 * 0.5) <= resized_results['img_shape'][0] <= 288 * 2.0
assert int(512 * 0.5) <= resized_results['img_shape'][1] <= 512 * 2.0
# test minimum resized image shape is 640
transform = dict(type='Resize', scale=(2560, 640), keep_ratio=True)
resize_module = TRANSFORMS.build(transform)
resized_results = resize_module(results.copy())
assert resized_results['img_shape'] == (640, 1138)
# test minimum resized image shape is 640 when img_scale=(512, 640)
# where should define `scale_factor` in MMCV new ``Resize`` function.
min_size_ratio = max(640 / img.shape[0], 640 / img.shape[1])
transform = dict(
type='Resize', scale_factor=min_size_ratio, keep_ratio=True)
resize_module = TRANSFORMS.build(transform)
resized_results = resize_module(results.copy())
assert resized_results['img_shape'] == (640, 1138)
# test h > w
img = np.random.randn(512, 288, 3)
results['img'] = img
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
# Set initial values for default meta_keys
results['pad_shape'] = img.shape
results['scale_factor'] = 1.0
min_size_ratio = max(640 / img.shape[0], 640 / img.shape[1])
transform = dict(
type='Resize',
scale=(2560, 640),
scale_factor=min_size_ratio,
keep_ratio=True)
resize_module = TRANSFORMS.build(transform)
resized_results = resize_module(results.copy())
assert resized_results['img_shape'] == (1138, 640)
def test_flip():
# test assertion for invalid prob
with pytest.raises(AssertionError):
transform = dict(type='RandomFlip', prob=1.5)
TRANSFORMS.build(transform)
# test assertion for invalid direction
with pytest.raises(AssertionError):
transform = dict(type='RandomFlip', prob=1.0, direction='horizonta')
TRANSFORMS.build(transform)
transform = dict(type='RandomFlip', prob=1.0)
flip_module = TRANSFORMS.build(transform)
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../data/color.jpg'), 'color')
original_img = copy.deepcopy(img)
seg = np.array(
Image.open(osp.join(osp.dirname(__file__), '../data/seg.png')))
original_seg = copy.deepcopy(seg)
results['img'] = img
results['gt_semantic_seg'] = seg
results['seg_fields'] = ['gt_semantic_seg']
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
# Set initial values for default meta_keys
results['pad_shape'] = img.shape
results['scale_factor'] = 1.0
results = flip_module(results)
flip_module = TRANSFORMS.build(transform)
results = flip_module(results)
assert np.equal(original_img, results['img']).all()
assert np.equal(original_seg, results['gt_semantic_seg']).all()
def test_random_rotate_flip():
with pytest.raises(AssertionError):
transform = dict(type='RandomRotFlip', flip_prob=1.5)
TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(type='RandomRotFlip', rotate_prob=1.5)
TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(type='RandomRotFlip', degree=[20, 20, 20])
TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(type='RandomRotFlip', degree=-20)
TRANSFORMS.build(transform)
transform = dict(
type='RandomRotFlip', flip_prob=1.0, rotate_prob=0, degree=20)
rot_flip_module = TRANSFORMS.build(transform)
results = dict()
img = mmcv.imread(
osp.join(
osp.dirname(__file__),
'../data/pseudo_synapse_dataset/img_dir/case0005_slice000.jpg'),
'color')
original_img = copy.deepcopy(img)
seg = np.array(
Image.open(
osp.join(
osp.dirname(__file__),
'../data/pseudo_synapse_dataset/ann_dir/case0005_slice000.png')
))
original_seg = copy.deepcopy(seg)
results['img'] = img
results['gt_semantic_seg'] = seg
results['seg_fields'] = ['gt_semantic_seg']
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
# Set initial values for default meta_keys
results['pad_shape'] = img.shape
results['scale_factor'] = 1.0
result_flip = rot_flip_module(results)
assert original_img.shape == result_flip['img'].shape
assert original_seg.shape == result_flip['gt_semantic_seg'].shape
transform = dict(
type='RandomRotFlip', flip_prob=0, rotate_prob=1.0, degree=20)
rot_flip_module = TRANSFORMS.build(transform)
result_rotate = rot_flip_module(results)
assert original_img.shape == result_rotate['img'].shape
assert original_seg.shape == result_rotate['gt_semantic_seg'].shape
assert str(transform) == "{'type': 'RandomRotFlip'," \
" 'flip_prob': 0," \
" 'rotate_prob': 1.0," \
" 'degree': 20}"
def test_pad():
# test assertion if both size_divisor and size is None
with pytest.raises(AssertionError):
transform = dict(type='Pad')
TRANSFORMS.build(transform)
transform = dict(type='Pad', size_divisor=32)
transform = TRANSFORMS.build(transform)
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../data/color.jpg'), 'color')
original_img = copy.deepcopy(img)
results['img'] = img
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
# Set initial values for default meta_keys
results['pad_shape'] = img.shape
results['scale_factor'] = 1.0
results = transform(results)
# original img already divisible by 32
assert np.equal(results['img'], original_img).all()
img_shape = results['img'].shape
assert img_shape[0] % 32 == 0
assert img_shape[1] % 32 == 0
def test_normalize():
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True)
transform = dict(type='Normalize', **img_norm_cfg)
transform = TRANSFORMS.build(transform)
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../data/color.jpg'), 'color')
original_img = copy.deepcopy(img)
results['img'] = img
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
# Set initial values for default meta_keys
results['pad_shape'] = img.shape
results['scale_factor'] = 1.0
results = transform(results)
mean = np.array(img_norm_cfg['mean'])
std = np.array(img_norm_cfg['std'])
converted_img = (original_img[..., ::-1] - mean) / std
assert np.allclose(results['img'], converted_img)
def test_random_crop():
# test assertion for invalid random crop
with pytest.raises(AssertionError):
RandomCrop(crop_size=(-1, 0))
results = dict()
img = mmcv.imread(osp.join('tests/data/color.jpg'), 'color')
seg = np.array(Image.open(osp.join('tests/data/seg.png')))
results['img'] = img
results['gt_semantic_seg'] = seg
results['seg_fields'] = ['gt_semantic_seg']
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
# Set initial values for default meta_keys
results['pad_shape'] = img.shape
results['scale_factor'] = 1.0
h, w, _ = img.shape
pipeline = RandomCrop(crop_size=(h - 20, w - 20))
results = pipeline(results)
assert results['img'].shape[:2] == (h - 20, w - 20)
assert results['img_shape'] == (h - 20, w - 20)
assert results['gt_semantic_seg'].shape[:2] == (h - 20, w - 20)
def test_rgb2gray():
# test assertion out_channels should be greater than 0
with pytest.raises(AssertionError):
transform = dict(type='RGB2Gray', out_channels=-1)
TRANSFORMS.build(transform)
# test assertion weights should be tuple[float]
with pytest.raises(AssertionError):
transform = dict(type='RGB2Gray', out_channels=1, weights=1.1)
TRANSFORMS.build(transform)
# test out_channels is None
transform = dict(type='RGB2Gray')
transform = TRANSFORMS.build(transform)
assert str(transform) == f'RGB2Gray(' \
f'out_channels={None}, ' \
f'weights={(0.299, 0.587, 0.114)})'
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../data/color.jpg'), 'color')
h, w, c = img.shape
seg = np.array(
Image.open(osp.join(osp.dirname(__file__), '../data/seg.png')))
results['img'] = img
results['gt_semantic_seg'] = seg
results['seg_fields'] = ['gt_semantic_seg']
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
# Set initial values for default meta_keys
results['pad_shape'] = img.shape
results['scale_factor'] = 1.0
results = transform(results)
assert results['img'].shape == (h, w, c)
assert results['img_shape'] == (h, w, c)
assert results['ori_shape'] == (h, w, c)
# test out_channels = 2
transform = dict(type='RGB2Gray', out_channels=2)
transform = TRANSFORMS.build(transform)
assert str(transform) == f'RGB2Gray(' \
f'out_channels={2}, ' \
f'weights={(0.299, 0.587, 0.114)})'
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../data/color.jpg'), 'color')
h, w, c = img.shape
seg = np.array(
Image.open(osp.join(osp.dirname(__file__), '../data/seg.png')))
results['img'] = img
results['gt_semantic_seg'] = seg
results['seg_fields'] = ['gt_semantic_seg']
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
# Set initial values for default meta_keys
results['pad_shape'] = img.shape
results['scale_factor'] = 1.0
results = transform(results)
assert results['img'].shape == (h, w, 2)
assert results['img_shape'] == (h, w, 2)
def test_photo_metric_distortion():
results = dict()
img = mmcv.imread(osp.join('tests/data/color.jpg'), 'color')
seg = np.array(Image.open(osp.join('tests/data/seg.png')))
results['img'] = img
results['gt_semantic_seg'] = seg
results['seg_fields'] = ['gt_semantic_seg']
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
# Set initial values for default meta_keys
results['pad_shape'] = img.shape
results['scale_factor'] = 1.0
pipeline = PhotoMetricDistortion(saturation_range=(1., 1.))
results = pipeline(results)
assert (results['gt_semantic_seg'] == seg).all()
assert results['img_shape'] == img.shape
def test_rerange():
# test assertion if min_value or max_value is illegal
with pytest.raises(AssertionError):
transform = dict(type='Rerange', min_value=[0], max_value=[255])
TRANSFORMS.build(transform)
# test assertion if min_value >= max_value
with pytest.raises(AssertionError):
transform = dict(type='Rerange', min_value=1, max_value=1)
TRANSFORMS.build(transform)
# test assertion if img_min_value == img_max_value
with pytest.raises(AssertionError):
transform = dict(type='Rerange', min_value=0, max_value=1)
transform = TRANSFORMS.build(transform)
results = dict()
results['img'] = np.array([[1, 1], [1, 1]])
transform(results)
img_rerange_cfg = dict()
transform = dict(type='Rerange', **img_rerange_cfg)
transform = TRANSFORMS.build(transform)
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../data/color.jpg'), 'color')
original_img = copy.deepcopy(img)
results['img'] = img
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
# Set initial values for default meta_keys
results['pad_shape'] = img.shape
results['scale_factor'] = 1.0
results = transform(results)
min_value = np.min(original_img)
max_value = np.max(original_img)
converted_img = (original_img - min_value) / (max_value - min_value) * 255
assert np.allclose(results['img'], converted_img)
assert str(transform) == f'Rerange(min_value={0}, max_value={255})'
def test_CLAHE():
# test assertion if clip_limit is None
with pytest.raises(AssertionError):
transform = dict(type='CLAHE', clip_limit=None)
TRANSFORMS.build(transform)
# test assertion if tile_grid_size is illegal
with pytest.raises(AssertionError):
transform = dict(type='CLAHE', tile_grid_size=(8.0, 8.0))
TRANSFORMS.build(transform)
# test assertion if tile_grid_size is illegal
with pytest.raises(AssertionError):
transform = dict(type='CLAHE', tile_grid_size=(9, 9, 9))
TRANSFORMS.build(transform)
transform = dict(type='CLAHE', clip_limit=2)
transform = TRANSFORMS.build(transform)
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../data/color.jpg'), 'color')
original_img = copy.deepcopy(img)
results['img'] = img
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
# Set initial values for default meta_keys
results['pad_shape'] = img.shape
results['scale_factor'] = 1.0
results = transform(results)
converted_img = np.empty(original_img.shape)
for i in range(original_img.shape[2]):
converted_img[:, :, i] = mmcv.clahe(
np.array(original_img[:, :, i], dtype=np.uint8), 2, (8, 8))
assert np.allclose(results['img'], converted_img)
assert str(transform) == f'CLAHE(clip_limit={2}, tile_grid_size={(8, 8)})'
def test_adjust_gamma():
# test assertion if gamma <= 0
with pytest.raises(AssertionError):
transform = dict(type='AdjustGamma', gamma=0)
TRANSFORMS.build(transform)
# test assertion if gamma is list
with pytest.raises(AssertionError):
transform = dict(type='AdjustGamma', gamma=[1.2])
TRANSFORMS.build(transform)
# test with gamma = 1.2
transform = dict(type='AdjustGamma', gamma=1.2)
transform = TRANSFORMS.build(transform)
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../data/color.jpg'), 'color')
original_img = copy.deepcopy(img)
results['img'] = img
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
# Set initial values for default meta_keys
results['pad_shape'] = img.shape
results['scale_factor'] = 1.0
results = transform(results)
inv_gamma = 1.0 / 1.2
table = np.array([((i / 255.0)**inv_gamma) * 255
for i in np.arange(0, 256)]).astype('uint8')
converted_img = mmcv.lut_transform(
np.array(original_img, dtype=np.uint8), table)
assert np.allclose(results['img'], converted_img)
assert str(transform) == f'AdjustGamma(gamma={1.2})'
def test_rotate():
# test assertion degree should be tuple[float] or float
with pytest.raises(AssertionError):
transform = dict(type='RandomRotate', prob=0.5, degree=-10)
TRANSFORMS.build(transform)
# test assertion degree should be tuple[float] or float
with pytest.raises(AssertionError):
transform = dict(type='RandomRotate', prob=0.5, degree=(10., 20., 30.))
TRANSFORMS.build(transform)
transform = dict(type='RandomRotate', degree=10., prob=1.)
transform = TRANSFORMS.build(transform)
assert str(transform) == f'RandomRotate(' \
f'prob={1.}, ' \
f'degree=({-10.}, {10.}), ' \
f'pad_val={0}, ' \
f'seg_pad_val={255}, ' \
f'center={None}, ' \
f'auto_bound={False})'
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../data/color.jpg'), 'color')
h, w, _ = img.shape
seg = np.array(
Image.open(osp.join(osp.dirname(__file__), '../data/seg.png')))
results['img'] = img
results['gt_semantic_seg'] = seg
results['seg_fields'] = ['gt_semantic_seg']
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
# Set initial values for default meta_keys
results['pad_shape'] = img.shape
results['scale_factor'] = 1.0
results = transform(results)
assert results['img'].shape[:2] == (h, w)
def test_seg_rescale():
results = dict()
seg = np.array(
Image.open(osp.join(osp.dirname(__file__), '../data/seg.png')))
results['gt_semantic_seg'] = seg
results['seg_fields'] = ['gt_semantic_seg']
h, w = seg.shape
transform = dict(type='SegRescale', scale_factor=1. / 2)
rescale_module = TRANSFORMS.build(transform)
rescale_results = rescale_module(results.copy())
assert rescale_results['gt_semantic_seg'].shape == (h // 2, w // 2)
transform = dict(type='SegRescale', scale_factor=1)
rescale_module = TRANSFORMS.build(transform)
rescale_results = rescale_module(results.copy())
assert rescale_results['gt_semantic_seg'].shape == (h, w)
def test_mosaic():
# test prob
with pytest.raises(AssertionError):
transform = dict(type='RandomMosaic', prob=1.5)
TRANSFORMS.build(transform)
# test assertion for invalid img_scale
with pytest.raises(AssertionError):
transform = dict(type='RandomMosaic', prob=1, img_scale=640)
TRANSFORMS.build(transform)
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../data/color.jpg'), 'color')
seg = np.array(
Image.open(osp.join(osp.dirname(__file__), '../data/seg.png')))
results['img'] = img
results['gt_semantic_seg'] = seg
results['seg_fields'] = ['gt_semantic_seg']
transform = dict(type='RandomMosaic', prob=1, img_scale=(10, 12))
mosaic_module = TRANSFORMS.build(transform)
assert 'Mosaic' in repr(mosaic_module)
# test assertion for invalid mix_results
with pytest.raises(AssertionError):
mosaic_module(results)
results['mix_results'] = [copy.deepcopy(results)] * 3
results = mosaic_module(results)
assert results['img'].shape[:2] == (20, 24)
results = dict()
results['img'] = img[:, :, 0]
results['gt_semantic_seg'] = seg
results['seg_fields'] = ['gt_semantic_seg']
transform = dict(type='RandomMosaic', prob=0, img_scale=(10, 12))
mosaic_module = TRANSFORMS.build(transform)
results['mix_results'] = [copy.deepcopy(results)] * 3
results = mosaic_module(results)
assert results['img'].shape[:2] == img.shape[:2]
transform = dict(type='RandomMosaic', prob=1, img_scale=(10, 12))
mosaic_module = TRANSFORMS.build(transform)
results = mosaic_module(results)
assert results['img'].shape[:2] == (20, 24)
def test_cutout():
# test prob
with pytest.raises(AssertionError):
transform = dict(type='RandomCutOut', prob=1.5, n_holes=1)
TRANSFORMS.build(transform)
# test n_holes
with pytest.raises(AssertionError):
transform = dict(
type='RandomCutOut', prob=0.5, n_holes=(5, 3), cutout_shape=(8, 8))
TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(
type='RandomCutOut',
prob=0.5,
n_holes=(3, 4, 5),
cutout_shape=(8, 8))
TRANSFORMS.build(transform)
# test cutout_shape and cutout_ratio
with pytest.raises(AssertionError):
transform = dict(
type='RandomCutOut', prob=0.5, n_holes=1, cutout_shape=8)
TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(
type='RandomCutOut', prob=0.5, n_holes=1, cutout_ratio=0.2)
TRANSFORMS.build(transform)
# either of cutout_shape and cutout_ratio should be given
with pytest.raises(AssertionError):
transform = dict(type='RandomCutOut', prob=0.5, n_holes=1)
TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(
type='RandomCutOut',
prob=0.5,
n_holes=1,
cutout_shape=(2, 2),
cutout_ratio=(0.4, 0.4))
TRANSFORMS.build(transform)
# test seg_fill_in
with pytest.raises(AssertionError):
transform = dict(
type='RandomCutOut',
prob=0.5,
n_holes=1,
cutout_shape=(8, 8),
seg_fill_in='a')
TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(
type='RandomCutOut',
prob=0.5,
n_holes=1,
cutout_shape=(8, 8),
seg_fill_in=256)
TRANSFORMS.build(transform)
results = dict()
img = mmcv.imread(
osp.join(osp.dirname(__file__), '../data/color.jpg'), 'color')
seg = np.array(
Image.open(osp.join(osp.dirname(__file__), '../data/seg.png')))
results['img'] = img
results['gt_semantic_seg'] = seg
results['seg_fields'] = ['gt_semantic_seg']
results['img_shape'] = img.shape
results['ori_shape'] = img.shape
results['pad_shape'] = img.shape
results['img_fields'] = ['img']
transform = dict(
type='RandomCutOut', prob=1, n_holes=1, cutout_shape=(10, 10))
cutout_module = TRANSFORMS.build(transform)
assert 'cutout_shape' in repr(cutout_module)
cutout_result = cutout_module(copy.deepcopy(results))
assert cutout_result['img'].sum() < img.sum()
transform = dict(
type='RandomCutOut', prob=1, n_holes=1, cutout_ratio=(0.8, 0.8))
cutout_module = TRANSFORMS.build(transform)
assert 'cutout_ratio' in repr(cutout_module)
cutout_result = cutout_module(copy.deepcopy(results))
assert cutout_result['img'].sum() < img.sum()
transform = dict(
type='RandomCutOut', prob=0, n_holes=1, cutout_ratio=(0.8, 0.8))
cutout_module = TRANSFORMS.build(transform)
cutout_result = cutout_module(copy.deepcopy(results))
assert cutout_result['img'].sum() == img.sum()
assert cutout_result['gt_semantic_seg'].sum() == seg.sum()
transform = dict(
type='RandomCutOut',
prob=1,
n_holes=(2, 4),
cutout_shape=[(10, 10), (15, 15)],
fill_in=(255, 255, 255),
seg_fill_in=None)
cutout_module = TRANSFORMS.build(transform)
cutout_result = cutout_module(copy.deepcopy(results))
assert cutout_result['img'].sum() > img.sum()
assert cutout_result['gt_semantic_seg'].sum() == seg.sum()
transform = dict(
type='RandomCutOut',
prob=1,
n_holes=1,
cutout_ratio=(0.8, 0.8),
fill_in=(255, 255, 255),
seg_fill_in=255)
cutout_module = TRANSFORMS.build(transform)
cutout_result = cutout_module(copy.deepcopy(results))
assert cutout_result['img'].sum() > img.sum()
assert cutout_result['gt_semantic_seg'].sum() > seg.sum()
def test_resize_to_multiple():
transform = dict(type='ResizeToMultiple', size_divisor=32)
transform = TRANSFORMS.build(transform)
img = np.random.randn(213, 232, 3)
seg = np.random.randint(0, 19, (213, 232))
results = dict()
results['img'] = img
results['gt_semantic_seg'] = seg
results['seg_fields'] = ['gt_semantic_seg']
results['img_shape'] = img.shape
results['pad_shape'] = img.shape
results = transform(results)
assert results['img'].shape == (224, 256, 3)
assert results['gt_semantic_seg'].shape == (224, 256)
assert results['img_shape'] == (224, 256)
def test_generate_edge():
transform = dict(type='GenerateEdge', edge_width=1)
transform = TRANSFORMS.build(transform)
seg_map = np.array([
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 2],
[1, 1, 1, 2, 2],
[1, 1, 2, 2, 2],
[1, 2, 2, 2, 2],
[2, 2, 2, 2, 2],
])
results = dict()
results['gt_seg_map'] = seg_map
results['img_shape'] = seg_map.shape
results = transform(results)
assert np.all(results['gt_edge_map'] == np.array([
[0, 0, 0, 1, 0],
[0, 0, 1, 1, 1],
[0, 1, 1, 1, 0],
[1, 1, 1, 0, 0],
[1, 1, 0, 0, 0],
[1, 0, 0, 0, 0],
]))
def test_biomedical3d_random_crop():
# test assertion for invalid random crop
with pytest.raises(AssertionError):
transform = dict(type='BioMedical3DRandomCrop', crop_shape=(-2, -1, 0))
transform = TRANSFORMS.build(transform)
from mmseg.datasets.transforms import (LoadBiomedicalAnnotation,
LoadBiomedicalImageFromFile)
results = dict()
results['img_path'] = osp.join(
osp.dirname(__file__), '../data', 'biomedical.nii.gz')
transform = LoadBiomedicalImageFromFile()
results = transform(copy.deepcopy(results))
results['seg_map_path'] = osp.join(
osp.dirname(__file__), '../data', 'biomedical_ann.nii.gz')
transform = LoadBiomedicalAnnotation()
results = transform(copy.deepcopy(results))
d, h, w = results['img_shape']
transform = dict(
type='BioMedical3DRandomCrop',
crop_shape=(d - 20, h - 20, w - 20),
keep_foreground=True)
transform = TRANSFORMS.build(transform)
crop_results = transform(results)
assert crop_results['img'].shape[1:] == (d - 20, h - 20, w - 20)
assert crop_results['img_shape'] == (d - 20, h - 20, w - 20)
assert crop_results['gt_seg_map'].shape == (d - 20, h - 20, w - 20)
transform = dict(
type='BioMedical3DRandomCrop',
crop_shape=(d - 20, h - 20, w - 20),
keep_foreground=False)
transform = TRANSFORMS.build(transform)
crop_results = transform(results)
assert crop_results['img'].shape[1:] == (d - 20, h - 20, w - 20)
assert crop_results['img_shape'] == (d - 20, h - 20, w - 20)
assert crop_results['gt_seg_map'].shape == (d - 20, h - 20, w - 20)
def test_biomedical_gaussian_noise():
# test assertion for invalid prob
with pytest.raises(AssertionError):
transform = dict(type='BioMedicalGaussianNoise', prob=1.5)
TRANSFORMS.build(transform)
# test assertion for invalid std
with pytest.raises(AssertionError):
transform = dict(
type='BioMedicalGaussianNoise', prob=0.2, mean=0.5, std=-0.5)
TRANSFORMS.build(transform)
transform = dict(type='BioMedicalGaussianNoise', prob=1.0)
noise_module = TRANSFORMS.build(transform)
assert str(noise_module) == 'BioMedicalGaussianNoise'\
'(prob=1.0, ' \
'mean=0.0, ' \
'std=0.1)'
transform = dict(type='BioMedicalGaussianNoise', prob=1.0)
noise_module = TRANSFORMS.build(transform)
results = dict(
img_path=osp.join(osp.dirname(__file__), '../data/biomedical.nii.gz'))
from mmseg.datasets.transforms import LoadBiomedicalImageFromFile
transform = LoadBiomedicalImageFromFile()
results = transform(copy.deepcopy(results))
original_img = copy.deepcopy(results['img'])
results = noise_module(results)
assert original_img.shape == results['img'].shape
def test_biomedical_gaussian_blur():
# test assertion for invalid prob
with pytest.raises(AssertionError):
transform = dict(type='BioMedicalGaussianBlur', prob=-1.5)
TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(
type='BioMedicalGaussianBlur', prob=1.0, sigma_range=0.6)
smooth_module = TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(
type='BioMedicalGaussianBlur', prob=1.0, sigma_range=(0.6))
smooth_module = TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(
type='BioMedicalGaussianBlur', prob=1.0, sigma_range=(15, 8, 9))
TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(
type='BioMedicalGaussianBlur', prob=1.0, sigma_range='0.16')
TRANSFORMS.build(transform)
transform = dict(
type='BioMedicalGaussianBlur', prob=1.0, sigma_range=(0.7, 0.8))
smooth_module = TRANSFORMS.build(transform)
assert str(
smooth_module
) == 'BioMedicalGaussianBlur(prob=1.0, ' \
'prob_per_channel=0.5, '\
'sigma_range=(0.7, 0.8), ' \
'different_sigma_per_channel=True, '\
'different_sigma_per_axis=True)'
transform = dict(type='BioMedicalGaussianBlur', prob=1.0)
smooth_module = TRANSFORMS.build(transform)
assert str(
smooth_module
) == 'BioMedicalGaussianBlur(prob=1.0, ' \
'prob_per_channel=0.5, '\
'sigma_range=(0.5, 1.0), ' \
'different_sigma_per_channel=True, '\
'different_sigma_per_axis=True)'
results = dict(
img_path=osp.join(osp.dirname(__file__), '../data/biomedical.nii.gz'))
from mmseg.datasets.transforms import LoadBiomedicalImageFromFile
transform = LoadBiomedicalImageFromFile()
results = transform(copy.deepcopy(results))
original_img = copy.deepcopy(results['img'])
results = smooth_module(results)
assert original_img.shape == results['img'].shape
# the max value in the smoothed image should be less than the original one
assert original_img.max() >= results['img'].max()
assert original_img.min() <= results['img'].min()
transform = dict(
type='BioMedicalGaussianBlur',
prob=1.0,
different_sigma_per_axis=False)
smooth_module = TRANSFORMS.build(transform)
results = dict(
img_path=osp.join(osp.dirname(__file__), '../data/biomedical.nii.gz'))
from mmseg.datasets.transforms import LoadBiomedicalImageFromFile
transform = LoadBiomedicalImageFromFile()
results = transform(copy.deepcopy(results))
original_img = copy.deepcopy(results['img'])
results = smooth_module(results)
assert original_img.shape == results['img'].shape
# the max value in the smoothed image should be less than the original one
assert original_img.max() >= results['img'].max()
assert original_img.min() <= results['img'].min()
def test_BioMedicalRandomGamma():
with pytest.raises(AssertionError):
transform = dict(
type='BioMedicalRandomGamma', prob=-1, gamma_range=(0.7, 1.2))
TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(
type='BioMedicalRandomGamma', prob=1.2, gamma_range=(0.7, 1.2))
TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(
type='BioMedicalRandomGamma', prob=1.0, gamma_range=(0.7))
TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(
type='BioMedicalRandomGamma',
prob=1.0,
gamma_range=(0.7, 0.2, 0.3))
TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(
type='BioMedicalRandomGamma',
prob=1.0,
gamma_range=(0.7, 2),
invert_image=1)
TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(
type='BioMedicalRandomGamma',
prob=1.0,
gamma_range=(0.7, 2),
per_channel=1)
TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(
type='BioMedicalRandomGamma',
prob=1.0,
gamma_range=(0.7, 2),
retain_stats=1)
TRANSFORMS.build(transform)
test_img = 'tests/data/biomedical.nii.gz'
results = dict(img_path=test_img)
transform = LoadBiomedicalImageFromFile()
results = transform(copy.deepcopy(results))
origin_img = results['img']
transform2 = dict(
type='BioMedicalRandomGamma',
prob=1.0,
gamma_range=(0.7, 2),
)
transform2 = TRANSFORMS.build(transform2)
results = transform2(results)
transformed_img = results['img']
assert origin_img.shape == transformed_img.shape
def test_BioMedical3DPad():
# test assertion.
with pytest.raises(AssertionError):
transform = dict(type='BioMedical3DPad', pad_shape=None)
TRANSFORMS.build(transform)
with pytest.raises(AssertionError):
transform = dict(type='BioMedical3DPad', pad_shape=[256, 256])
TRANSFORMS.build(transform)
data_info1 = dict(img=np.random.random((8, 6, 4, 4)))
transform = dict(type='BioMedical3DPad', pad_shape=(6, 6, 6))
transform = TRANSFORMS.build(transform)
results = transform(copy.deepcopy(data_info1))
assert results['img'].shape[1:] == (6, 6, 6)
assert results['pad_shape'] == (6, 6, 6)
transform = dict(type='BioMedical3DPad', pad_shape=(4, 6, 6))
transform = TRANSFORMS.build(transform)
results = transform(copy.deepcopy(data_info1))
assert results['img'].shape[1:] == (6, 6, 6)
assert results['pad_shape'] == (6, 6, 6)
data_info2 = dict(
img=np.random.random((8, 6, 4, 4)),
gt_seg_map=np.random.randint(0, 2, (6, 4, 4)))
transform = dict(type='BioMedical3DPad', pad_shape=(6, 6, 6))
transform = TRANSFORMS.build(transform)
results = transform(copy.deepcopy(data_info2))
assert results['img'].shape[1:] == (6, 6, 6)
assert results['gt_seg_map'].shape[1:] == (6, 6, 6)
assert results['pad_shape'] == (6, 6, 6)
transform = dict(type='BioMedical3DPad', pad_shape=(4, 6, 6))
transform = TRANSFORMS.build(transform)
results = transform(copy.deepcopy(data_info2))
assert results['img'].shape[1:] == (6, 6, 6)
assert results['gt_seg_map'].shape[1:] == (6, 6, 6)
assert results['pad_shape'] == (6, 6, 6)
def test_biomedical_3d_flip():
# test assertion for invalid prob
with pytest.raises(AssertionError):
transform = dict(type='BioMedical3DRandomFlip', prob=1.5, axes=(0, 1))
transform = TRANSFORMS.build(transform)
# test assertion for invalid direction
with pytest.raises(AssertionError):
transform = dict(type='BioMedical3DRandomFlip', prob=1, axes=(0, 1, 3))
transform = TRANSFORMS.build(transform)
# test flip axes are (0, 1, 2)
transform = dict(type='BioMedical3DRandomFlip', prob=1, axes=(0, 1, 2))
transform = TRANSFORMS.build(transform)
# test with random 3d data
results = dict()
results['img_path'] = 'Null'
results['img_shape'] = (1, 16, 16, 16)
results['img'] = np.random.randn(1, 16, 16, 16)
results['gt_seg_map'] = np.random.randint(0, 4, (16, 16, 16))
original_img = results['img'].copy()
original_seg = results['gt_seg_map'].copy()
# flip first time
results = transform(results)
with pytest.raises(AssertionError):
assert np.equal(original_img, results['img']).all()
with pytest.raises(AssertionError):
assert np.equal(original_seg, results['gt_seg_map']).all()
# flip second time
results = transform(results)
assert np.equal(original_img, results['img']).all()
assert np.equal(original_seg, results['gt_seg_map']).all()
# test with actual data and flip axes are (0, 1)
# load biomedical 3d img and seg
data_prefix = osp.join(osp.dirname(__file__), '../data')
input_results = dict(img_path=osp.join(data_prefix, 'biomedical.npy'))
biomedical_loader = LoadBiomedicalData(with_seg=True)
data = biomedical_loader(copy.deepcopy(input_results))
results = data.copy()
original_img = data['img'].copy()
original_seg = data['gt_seg_map'].copy()
# test flip axes are (0, 1)
transform = dict(type='BioMedical3DRandomFlip', prob=1, axes=(0, 1))
transform = TRANSFORMS.build(transform)
# flip first time
results = transform(results)
with pytest.raises(AssertionError):
assert np.equal(original_img, results['img']).all()
with pytest.raises(AssertionError):
assert np.equal(original_seg, results['gt_seg_map']).all()
# flip second time
results = transform(results)
assert np.equal(original_img, results['img']).all()
assert np.equal(original_seg, results['gt_seg_map']).all()
# test transform with flip axes = (1)
transform = dict(type='BioMedical3DRandomFlip', prob=1, axes=(1, ))
transform = TRANSFORMS.build(transform)
results = data.copy()
results = transform(results)
results = transform(results)
assert np.equal(original_img, results['img']).all()
assert np.equal(original_seg, results['gt_seg_map']).all()
# test transform with swap_label_pairs
transform = dict(
type='BioMedical3DRandomFlip',
prob=1,
axes=(1, 2),
swap_label_pairs=[(0, 1)])
transform = TRANSFORMS.build(transform)
results = data.copy()
results = transform(results)
with pytest.raises(AssertionError):
assert np.equal(original_seg, results['gt_seg_map']).all()
# swap twice
results = transform(results)
assert np.equal(original_img, results['img']).all()
assert np.equal(original_seg, results['gt_seg_map']).all()