mmsegmentation/tests/test_evaluation/test_metrics/test_citys_metric.py

127 lines
4.6 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from unittest import TestCase
import numpy as np
import pytest
import torch
from mmengine.structures import BaseDataElement, PixelData
from mmseg.evaluation import CityscapesMetric
from mmseg.structures import SegDataSample
class TestCityscapesMetric(TestCase):
def _demo_mm_inputs(self,
batch_size=1,
image_shapes=(3, 128, 256),
num_classes=5):
"""Create a superset of inputs needed to run test or train batches.
Args:
batch_size (int): batch size. Default to 2.
image_shapes (List[tuple], Optional): image shape.
Default to (3, 64, 64)
num_classes (int): number of different classes.
Default to 5.
"""
if isinstance(image_shapes, list):
assert len(image_shapes) == batch_size
else:
image_shapes = [image_shapes] * batch_size
packed_inputs = []
for idx in range(batch_size):
image_shape = image_shapes[idx]
_, h, w = image_shape
mm_inputs = dict()
data_sample = SegDataSample()
gt_semantic_seg = np.random.randint(
0, num_classes, (1, h, w), dtype=np.uint8)
gt_semantic_seg = torch.LongTensor(gt_semantic_seg)
gt_sem_seg_data = dict(data=gt_semantic_seg)
data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data)
mm_inputs['data_sample'] = data_sample.to_dict()
mm_inputs['data_sample'][
'seg_map_path'] = 'tests/data/pseudo_cityscapes_dataset/gtFine/val/frankfurt/frankfurt_000000_000294_gtFine_labelTrainIds.png' # noqa
mm_inputs['seg_map_path'] = mm_inputs['data_sample'][
'seg_map_path']
packed_inputs.append(mm_inputs)
return packed_inputs
def _demo_mm_model_output(self,
batch_size=1,
image_shapes=(3, 128, 256),
num_classes=5):
"""Create a superset of inputs needed to run test or train batches.
Args:
batch_size (int): batch size. Default to 2.
image_shapes (List[tuple], Optional): image shape.
Default to (3, 64, 64)
num_classes (int): number of different classes.
Default to 5.
"""
results_dict = dict()
_, h, w = image_shapes
seg_logit = torch.randn(batch_size, num_classes, h, w)
results_dict['seg_logits'] = seg_logit
seg_pred = np.random.randint(
0, num_classes, (batch_size, h, w), dtype=np.uint8)
seg_pred = torch.LongTensor(seg_pred)
results_dict['pred_sem_seg'] = seg_pred
batch_datasampes = [
SegDataSample()
for _ in range(results_dict['pred_sem_seg'].shape[0])
]
for key, value in results_dict.items():
for i in range(value.shape[0]):
setattr(batch_datasampes[i], key, PixelData(data=value[i]))
_predictions = []
for pred in batch_datasampes:
if isinstance(pred, BaseDataElement):
test_data = pred.to_dict()
test_data[
'img_path'] = 'tests/data/pseudo_cityscapes_dataset/leftImg8bit/val/frankfurt/frankfurt_000000_000294_leftImg8bit.png' # noqa
_predictions.append(test_data)
else:
_predictions.append(pred)
return _predictions
def test_evaluate(self):
"""Test using the metric in the same way as Evalutor."""
data_batch = self._demo_mm_inputs(2)
predictions = self._demo_mm_model_output(2)
data_samples = [
dict(**data, **result)
for data, result in zip(data_batch, predictions)
]
# test keep_results should be True when format_only is True
with pytest.raises(AssertionError):
CityscapesMetric(
output_dir='tmp', format_only=True, keep_results=False)
# test evaluate with cityscape metric
metric = CityscapesMetric(output_dir='tmp')
metric.process(data_batch, data_samples)
res = metric.evaluate(2)
self.assertIsInstance(res, dict)
# test format_only
metric = CityscapesMetric(
output_dir='tmp', format_only=True, keep_results=True)
metric.process(data_batch, data_samples)
metric.evaluate(2)
assert osp.exists('tmp')
assert osp.isfile('tmp/frankfurt_000000_000294_leftImg8bit.png')
import shutil
shutil.rmtree('tmp')