MengzhangLI 2717ee62f9 [Feature] Support kenerl updation for some decoder heads. (#1299)
* [Feature] Add kenerl updation for some decoder heads.

* [Feature] Add kenerl updation for some decoder heads.

* directly use forward_feature && modify other 3 decoder heads

* remover kernel_update attr

* delete unnecessary variables in forward function

* delete kernel update function

* delete kernel update function

* delete unnecessary docstrings

* modify comments in self._forward_feature()

* modify docstrings in self._forward_feature()

* fix docstring

* modify uperhead
2022-02-27 11:35:29 +08:00

97 lines
3.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from ..builder import HEADS
from .decode_head import BaseDecodeHead
@HEADS.register_module()
class FCNHead(BaseDecodeHead):
"""Fully Convolution Networks for Semantic Segmentation.
This head is implemented of `FCNNet <https://arxiv.org/abs/1411.4038>`_.
Args:
num_convs (int): Number of convs in the head. Default: 2.
kernel_size (int): The kernel size for convs in the head. Default: 3.
concat_input (bool): Whether concat the input and output of convs
before classification layer.
dilation (int): The dilation rate for convs in the head. Default: 1.
"""
def __init__(self,
num_convs=2,
kernel_size=3,
concat_input=True,
dilation=1,
**kwargs):
assert num_convs >= 0 and dilation > 0 and isinstance(dilation, int)
self.num_convs = num_convs
self.concat_input = concat_input
self.kernel_size = kernel_size
super(FCNHead, self).__init__(**kwargs)
if num_convs == 0:
assert self.in_channels == self.channels
conv_padding = (kernel_size // 2) * dilation
convs = []
convs.append(
ConvModule(
self.in_channels,
self.channels,
kernel_size=kernel_size,
padding=conv_padding,
dilation=dilation,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
for i in range(num_convs - 1):
convs.append(
ConvModule(
self.channels,
self.channels,
kernel_size=kernel_size,
padding=conv_padding,
dilation=dilation,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
if num_convs == 0:
self.convs = nn.Identity()
else:
self.convs = nn.Sequential(*convs)
if self.concat_input:
self.conv_cat = ConvModule(
self.in_channels + self.channels,
self.channels,
kernel_size=kernel_size,
padding=kernel_size // 2,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
def _forward_feature(self, inputs):
"""Forward function for feature maps before classifying each pixel with
``self.cls_seg`` fc.
Args:
inputs (list[Tensor]): List of multi-level img features.
Returns:
feats (Tensor): A tensor of shape (batch_size, self.channels,
H, W) which is feature map for last layer of decoder head.
"""
x = self._transform_inputs(inputs)
feats = self.convs(x)
if self.concat_input:
feats = self.conv_cat(torch.cat([x, feats], dim=1))
return feats
def forward(self, inputs):
"""Forward function."""
output = self._forward_feature(inputs)
output = self.cls_seg(output)
return output