sennnnn 2800d43507 [Enhancement] Change readme style and Update metafiles. (#895)
* [Enhancement] Change readme style and prepare for metafiles update.

* Update apcnet github repo url.

* add code snippet.

* split code snippet & official repo.

* update md2yml hook.

* Update metafiles.

* Add converted from attribute.

* process conflict.

* Put defualt variable value.

* update bisenet v2 metafile.

* checkout to ubuntu environment.

* pop empty attribute & make task attribute list.

* update readme style

* update readme style

* update metafiles

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-09-28 16:25:37 +08:00

36 lines
4.2 KiB
Markdown

# Expectation-Maximization Attention Networks for Semantic Segmentation
## Introduction
<!-- [ALGORITHM] -->
<a href="https://xialipku.github.io/EMANet">Official Repo</a>
<a href="https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ema_head.py#L80">Code Snippet</a>
<details>
<summary align="right"><a href="https://arxiv.org/abs/1907.13426">EMANet (ICCV'2019)</a></summary>
```latex
@inproceedings{li2019expectation,
title={Expectation-maximization attention networks for semantic segmentation},
author={Li, Xia and Zhong, Zhisheng and Wu, Jianlong and Yang, Yibo and Lin, Zhouchen and Liu, Hong},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={9167--9176},
year={2019}
}
```
</details>
## Results and models
### Cityscapes
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ------ | -------- | --------- | ------: | -------: | -------------- | ----: | ------------- | --------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| EMANet | R-50-D8 | 512x1024 | 80000 | 5.4 | 4.58 | 77.59 | 79.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/emanet/emanet_r50-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes_20200901_100301-c43fcef1.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_512x1024_80k_cityscapes/emanet_r50-d8_512x1024_80k_cityscapes-20200901_100301.log.json) |
| EMANet | R-101-D8 | 512x1024 | 80000 | 6.2 | 2.87 | 79.10 | 81.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/emanet/emanet_r101-d8_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes_20200901_100301-2d970745.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_512x1024_80k_cityscapes/emanet_r101-d8_512x1024_80k_cityscapes-20200901_100301.log.json) |
| EMANet | R-50-D8 | 769x769 | 80000 | 8.9 | 1.97 | 79.33 | 80.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/emanet/emanet_r50-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes_20200901_100301-16f8de52.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r50-d8_769x769_80k_cityscapes/emanet_r50-d8_769x769_80k_cityscapes-20200901_100301.log.json) |
| EMANet | R-101-D8 | 769x769 | 80000 | 10.1 | 1.22 | 79.62 | 81.00 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/emanet/emanet_r101-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes_20200901_100301-47a324ce.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/emanet/emanet_r101-d8_769x769_80k_cityscapes/emanet_r101-d8_769x769_80k_cityscapes-20200901_100301.log.json) |