mmsegmentation/configs/unet
sennnnn d3dc4f9583 [Enhancement] Add Dev tools to boost develop (#798)
* Modify default work dir when training.

* Refactor gather_models.py.

* Add train and test matching list.

* Regression benchmark list.

* lower readme name to upper readme name.

* Add url check tool and model inference test tool.

* Modify tool name.

* Support duplicate mode of log json url check.

* Add regression benchmark evaluation automatic tool.

* Add train script generator.

* Only Support script running.

* Add evaluation results gather.

* Add exec Authority.

* Automatically make checkpoint root folder.

* Modify gather results save path.

* Coarse-grained train results gather tool.

* Complete benchmark train script.

* Make some little modifications.

* Fix checkpoint urls.

* Fix unet checkpoint urls.

* Fix fast scnn & fcn checkpoint url.

* Fix fast scnn checkpoint urls.

* Fix fast scnn url.

* Add differential results calculation.

* Add differential results of regression benchmark train results.

* Add an extra argument to select model.

* Update nonlocal_net & hrnet checkpoint url.

* Fix checkpoint url of hrnet and Fix some tta evaluation results and modify gather models tool.

* Modify fast scnn checkpoint url.

* Resolve new comments.

* Fix url check status code bug.

* Resolve some comments.

* Modify train scripts generator.

* Modify work_dir of regression benchmark results.

* model gather tool modification.
2021-09-02 09:44:51 -07:00
..
README.md [Enhancement] Add Dev tools to boost develop (#798) 2021-09-02 09:44:51 -07:00
deeplabv3_unet_s5-d16_64x64_40k_drive.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
deeplabv3_unet_s5-d16_128x128_40k_chase_db1.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
deeplabv3_unet_s5-d16_128x128_40k_stare.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
deeplabv3_unet_s5-d16_256x256_40k_hrf.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
fcn_unet_s5-d16_64x64_40k_drive.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
fcn_unet_s5-d16_128x128_40k_chase_db1.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
fcn_unet_s5-d16_128x128_40k_stare.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
fcn_unet_s5-d16_256x256_40k_hrf.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
pspnet_unet_s5-d16_64x64_40k_drive.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
pspnet_unet_s5-d16_128x128_40k_chase_db1.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
pspnet_unet_s5-d16_128x128_40k_stare.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
pspnet_unet_s5-d16_256x256_40k_hrf.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
unet.yml [Enhancement] Add Dev tools to boost develop (#798) 2021-09-02 09:44:51 -07:00

README.md

U-Net: Convolutional Networks for Biomedical Image Segmentation

Introduction

@inproceedings{ronneberger2015u,
  title={U-net: Convolutional networks for biomedical image segmentation},
  author={Ronneberger, Olaf and Fischer, Philipp and Brox, Thomas},
  booktitle={International Conference on Medical image computing and computer-assisted intervention},
  pages={234--241},
  year={2015},
  organization={Springer}
}

Results and models

DRIVE

Method Backbone Image Size Crop Size Stride Lr schd Mem (GB) Inf time (fps) Dice config download
FCN UNet-S5-D16 584x565 64x64 42x42 40000 0.680 - 78.67 config model | log
PSPNet UNet-S5-D16 584x565 64x64 42x42 40000 0.599 - 78.62 config model | log
DeepLabV3 UNet-S5-D16 584x565 64x64 42x42 40000 0.596 - 78.69 config model | log

STARE

Method Backbone Image Size Crop Size Stride Lr schd Mem (GB) Inf time (fps) Dice config download
FCN UNet-S5-D16 605x700 128x128 85x85 40000 0.968 - 81.02 config model | log
PSPNet UNet-S5-D16 605x700 128x128 85x85 40000 0.982 - 81.22 config model | log
DeepLabV3 UNet-S5-D16 605x700 128x128 85x85 40000 0.999 - 80.93 config model | log

CHASE_DB1

Method Backbone Image Size Crop Size Stride Lr schd Mem (GB) Inf time (fps) Dice config download
FCN UNet-S5-D16 960x999 128x128 85x85 40000 0.968 - 80.24 config model | log
PSPNet UNet-S5-D16 960x999 128x128 85x85 40000 0.982 - 80.36 config model | log
DeepLabV3 UNet-S5-D16 960x999 128x128 85x85 40000 0.999 - 80.47 config model | log

HRF

Method Backbone Image Size Crop Size Stride Lr schd Mem (GB) Inf time (fps) Dice config download
FCN UNet-S5-D16 2336x3504 256x256 170x170 40000 2.525 - 79.45 config model | log
PSPNet UNet-S5-D16 2336x3504 256x256 170x170 40000 2.588 - 80.07 config model | log
DeepLabV3 UNet-S5-D16 2336x3504 256x256 170x170 40000 2.604 - 80.21 config model | log