mmsegmentation/configs/upernet/upernet.yml

297 lines
9.3 KiB
YAML

Collections:
- Metadata:
Training Data:
- Cityscapes
- ADE20K
- Pascal VOC 2012 + Aug
Name: upernet
Models:
- Config: configs/upernet/upernet_r50_512x1024_40k_cityscapes.py
In Collection: upernet
Metadata:
backbone: R-50
crop size: (512,1024)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,1024)
value: 235.29
lr schd: 40000
memory (GB): 6.4
Name: upernet_r50_512x1024_40k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 77.1
mIoU(ms+flip): 78.37
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827-aa54cb54.pth
- Config: configs/upernet/upernet_r101_512x1024_40k_cityscapes.py
In Collection: upernet
Metadata:
backbone: R-101
crop size: (512,1024)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,1024)
value: 263.85
lr schd: 40000
memory (GB): 7.4
Name: upernet_r101_512x1024_40k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 78.69
mIoU(ms+flip): 80.11
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933-ebce3b10.pth
- Config: configs/upernet/upernet_r50_769x769_40k_cityscapes.py
In Collection: upernet
Metadata:
backbone: R-50
crop size: (769,769)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (769,769)
value: 568.18
lr schd: 40000
memory (GB): 7.2
Name: upernet_r50_769x769_40k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 77.98
mIoU(ms+flip): 79.7
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048-92d21539.pth
- Config: configs/upernet/upernet_r101_769x769_40k_cityscapes.py
In Collection: upernet
Metadata:
backbone: R-101
crop size: (769,769)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (769,769)
value: 641.03
lr schd: 40000
memory (GB): 8.4
Name: upernet_r101_769x769_40k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 79.03
mIoU(ms+flip): 80.77
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819-83c95d01.pth
- Config: configs/upernet/upernet_r50_512x1024_80k_cityscapes.py
In Collection: upernet
Metadata:
backbone: R-50
crop size: (512,1024)
lr schd: 80000
Name: upernet_r50_512x1024_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 78.19
mIoU(ms+flip): 79.19
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207-848beca8.pth
- Config: configs/upernet/upernet_r101_512x1024_80k_cityscapes.py
In Collection: upernet
Metadata:
backbone: R-101
crop size: (512,1024)
lr schd: 80000
Name: upernet_r101_512x1024_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 79.4
mIoU(ms+flip): 80.46
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403-f05f2345.pth
- Config: configs/upernet/upernet_r50_769x769_80k_cityscapes.py
In Collection: upernet
Metadata:
backbone: R-50
crop size: (769,769)
lr schd: 80000
Name: upernet_r50_769x769_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 79.39
mIoU(ms+flip): 80.92
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107-82ae7d15.pth
- Config: configs/upernet/upernet_r101_769x769_80k_cityscapes.py
In Collection: upernet
Metadata:
backbone: R-101
crop size: (769,769)
lr schd: 80000
Name: upernet_r101_769x769_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 80.1
mIoU(ms+flip): 81.49
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014-082fc334.pth
- Config: configs/upernet/upernet_r50_512x512_80k_ade20k.py
In Collection: upernet
Metadata:
backbone: R-50
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 42.74
lr schd: 80000
memory (GB): 8.1
Name: upernet_r50_512x512_80k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 40.7
mIoU(ms+flip): 41.81
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127-ecc8377b.pth
- Config: configs/upernet/upernet_r101_512x512_80k_ade20k.py
In Collection: upernet
Metadata:
backbone: R-101
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 49.16
lr schd: 80000
memory (GB): 9.1
Name: upernet_r101_512x512_80k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 42.91
mIoU(ms+flip): 43.96
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117-32e4db94.pth
- Config: configs/upernet/upernet_r50_512x512_160k_ade20k.py
In Collection: upernet
Metadata:
backbone: R-50
crop size: (512,512)
lr schd: 160000
Name: upernet_r50_512x512_160k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 42.05
mIoU(ms+flip): 42.78
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328-8534de8d.pth
- Config: configs/upernet/upernet_r101_512x512_160k_ade20k.py
In Collection: upernet
Metadata:
backbone: R-101
crop size: (512,512)
lr schd: 160000
Name: upernet_r101_512x512_160k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 43.82
mIoU(ms+flip): 44.85
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951-91b32684.pth
- Config: configs/upernet/upernet_r50_512x512_20k_voc12aug.py
In Collection: upernet
Metadata:
backbone: R-50
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 43.16
lr schd: 20000
memory (GB): 6.4
Name: upernet_r50_512x512_20k_voc12aug
Results:
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 74.82
mIoU(ms+flip): 76.35
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330-5b5890a7.pth
- Config: configs/upernet/upernet_r101_512x512_20k_voc12aug.py
In Collection: upernet
Metadata:
backbone: R-101
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 50.05
lr schd: 20000
memory (GB): 7.5
Name: upernet_r101_512x512_20k_voc12aug
Results:
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 77.1
mIoU(ms+flip): 78.29
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629-f14e7f27.pth
- Config: configs/upernet/upernet_r50_512x512_40k_voc12aug.py
In Collection: upernet
Metadata:
backbone: R-50
crop size: (512,512)
lr schd: 40000
Name: upernet_r50_512x512_40k_voc12aug
Results:
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 75.92
mIoU(ms+flip): 77.44
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257-ca9bcc6b.pth
- Config: configs/upernet/upernet_r101_512x512_40k_voc12aug.py
In Collection: upernet
Metadata:
backbone: R-101
crop size: (512,512)
lr schd: 40000
Name: upernet_r101_512x512_40k_voc12aug
Results:
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 77.43
mIoU(ms+flip): 78.56
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549-e26476ac.pth