DerrickWang005 62f70ebedd
support coco stuff-10k/164k (#625)
* support coco stuff-10k/164k

* update docs

* fix docs

* update docs

* fix import lints

* Update docs/dataset_prepare.md

* Update docs/dataset_prepare.md

* Update tools/convert_datasets/coco_stuff164k.py

* Update tools/convert_datasets/coco_stuff10k.py

* Update tools/convert_datasets/coco_stuff10k.py

* Update tools/convert_datasets/coco_stuff10k.py

* Update tools/convert_datasets/coco_stuff10k.py

* Update coco_stuff.py

fix the description of the dataset

* Update dataset_prepare.md

fix the doc tree of coco stuff 10k

* Update coco_stuff10k.py

fix img_dir

* Update coco_stuff.py

fix descriptions

* Update coco_stuff164k.py

fix out_dir

* Update coco_stuff10k.py

fix save file name

* Update coco_stuff.py

fix seg_map_suffix

* Update dataset_prepare.md

fix -p

* Update dataset_prepare.md

fix doc tree

* modify coco stuff convertor

* Remove redundant code

* fix 164k convert bug

* remove redundant comment

* add deeplabv3 configs and more iterations

* replace shutil.move with shtil.copyfile

* Update deeplabv3_r50-d8_512x512_4x4_80k_coco_stuff10k.py

fix wrong config

* Update deeplabv3_r101-d8_512x512_4x4_80k_coco_stuff164k.py

fix wrong config

* fix wrong configs

* fix wrong configs

* fix wrong path for coco stuff 10k

* fix convert bugs

* fix seg_filename bug

* when nproc=0, use track progress

* rename configs: coco_stuff --> coco-stuff

* add coco-stuff 10k and 164k to README.md

* update configs

* add deeplabv3 benchmark

* add pspnet benchmark

* remove redundant comma

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-09-22 20:48:08 +08:00

307 lines
6.5 KiB
Python

import argparse
import os.path as osp
import shutil
from functools import partial
import mmcv
import numpy as np
from PIL import Image
from scipy.io import loadmat
COCO_LEN = 10000
clsID_to_trID = {
0: 0,
1: 1,
2: 2,
3: 3,
4: 4,
5: 5,
6: 6,
7: 7,
8: 8,
9: 9,
10: 10,
11: 11,
13: 12,
14: 13,
15: 14,
16: 15,
17: 16,
18: 17,
19: 18,
20: 19,
21: 20,
22: 21,
23: 22,
24: 23,
25: 24,
27: 25,
28: 26,
31: 27,
32: 28,
33: 29,
34: 30,
35: 31,
36: 32,
37: 33,
38: 34,
39: 35,
40: 36,
41: 37,
42: 38,
43: 39,
44: 40,
46: 41,
47: 42,
48: 43,
49: 44,
50: 45,
51: 46,
52: 47,
53: 48,
54: 49,
55: 50,
56: 51,
57: 52,
58: 53,
59: 54,
60: 55,
61: 56,
62: 57,
63: 58,
64: 59,
65: 60,
67: 61,
70: 62,
72: 63,
73: 64,
74: 65,
75: 66,
76: 67,
77: 68,
78: 69,
79: 70,
80: 71,
81: 72,
82: 73,
84: 74,
85: 75,
86: 76,
87: 77,
88: 78,
89: 79,
90: 80,
92: 81,
93: 82,
94: 83,
95: 84,
96: 85,
97: 86,
98: 87,
99: 88,
100: 89,
101: 90,
102: 91,
103: 92,
104: 93,
105: 94,
106: 95,
107: 96,
108: 97,
109: 98,
110: 99,
111: 100,
112: 101,
113: 102,
114: 103,
115: 104,
116: 105,
117: 106,
118: 107,
119: 108,
120: 109,
121: 110,
122: 111,
123: 112,
124: 113,
125: 114,
126: 115,
127: 116,
128: 117,
129: 118,
130: 119,
131: 120,
132: 121,
133: 122,
134: 123,
135: 124,
136: 125,
137: 126,
138: 127,
139: 128,
140: 129,
141: 130,
142: 131,
143: 132,
144: 133,
145: 134,
146: 135,
147: 136,
148: 137,
149: 138,
150: 139,
151: 140,
152: 141,
153: 142,
154: 143,
155: 144,
156: 145,
157: 146,
158: 147,
159: 148,
160: 149,
161: 150,
162: 151,
163: 152,
164: 153,
165: 154,
166: 155,
167: 156,
168: 157,
169: 158,
170: 159,
171: 160,
172: 161,
173: 162,
174: 163,
175: 164,
176: 165,
177: 166,
178: 167,
179: 168,
180: 169,
181: 170,
182: 171
}
def convert_to_trainID(tuple_path, in_img_dir, in_ann_dir, out_img_dir,
out_mask_dir, is_train):
imgpath, maskpath = tuple_path
shutil.copyfile(
osp.join(in_img_dir, imgpath),
osp.join(out_img_dir, 'train2014', imgpath) if is_train else osp.join(
out_img_dir, 'test2014', imgpath))
annotate = loadmat(osp.join(in_ann_dir, maskpath))
mask = annotate['S'].astype(np.uint8)
mask_copy = mask.copy()
for clsID, trID in clsID_to_trID.items():
mask_copy[mask == clsID] = trID
seg_filename = osp.join(out_mask_dir, 'train2014',
maskpath.split('.')[0] +
'_labelTrainIds.png') if is_train else osp.join(
out_mask_dir, 'test2014',
maskpath.split('.')[0] + '_labelTrainIds.png')
Image.fromarray(mask_copy).save(seg_filename, 'PNG')
def generate_coco_list(folder):
train_list = osp.join(folder, 'imageLists', 'train.txt')
test_list = osp.join(folder, 'imageLists', 'test.txt')
train_paths = []
test_paths = []
with open(train_list) as f:
for filename in f:
basename = filename.strip()
imgpath = basename + '.jpg'
maskpath = basename + '.mat'
train_paths.append((imgpath, maskpath))
with open(test_list) as f:
for filename in f:
basename = filename.strip()
imgpath = basename + '.jpg'
maskpath = basename + '.mat'
test_paths.append((imgpath, maskpath))
return train_paths, test_paths
def parse_args():
parser = argparse.ArgumentParser(
description=\
'Convert COCO Stuff 10k annotations to mmsegmentation format') # noqa
parser.add_argument('coco_path', help='coco stuff path')
parser.add_argument('-o', '--out_dir', help='output path')
parser.add_argument(
'--nproc', default=16, type=int, help='number of process')
args = parser.parse_args()
return args
def main():
args = parse_args()
coco_path = args.coco_path
nproc = args.nproc
out_dir = args.out_dir or coco_path
out_img_dir = osp.join(out_dir, 'images')
out_mask_dir = osp.join(out_dir, 'annotations')
mmcv.mkdir_or_exist(osp.join(out_img_dir, 'train2014'))
mmcv.mkdir_or_exist(osp.join(out_img_dir, 'test2014'))
mmcv.mkdir_or_exist(osp.join(out_mask_dir, 'train2014'))
mmcv.mkdir_or_exist(osp.join(out_mask_dir, 'test2014'))
train_list, test_list = generate_coco_list(coco_path)
assert (len(train_list) +
len(test_list)) == COCO_LEN, 'Wrong length of list {} & {}'.format(
len(train_list), len(test_list))
if args.nproc > 1:
mmcv.track_parallel_progress(
partial(
convert_to_trainID,
in_img_dir=osp.join(coco_path, 'images'),
in_ann_dir=osp.join(coco_path, 'annotations'),
out_img_dir=out_img_dir,
out_mask_dir=out_mask_dir,
is_train=True),
train_list,
nproc=nproc)
mmcv.track_parallel_progress(
partial(
convert_to_trainID,
in_img_dir=osp.join(coco_path, 'images'),
in_ann_dir=osp.join(coco_path, 'annotations'),
out_img_dir=out_img_dir,
out_mask_dir=out_mask_dir,
is_train=False),
test_list,
nproc=nproc)
else:
mmcv.track_progress(
partial(
convert_to_trainID,
in_img_dir=osp.join(coco_path, 'images'),
in_ann_dir=osp.join(coco_path, 'annotations'),
out_img_dir=out_img_dir,
out_mask_dir=out_mask_dir,
is_train=True), train_list)
mmcv.track_progress(
partial(
convert_to_trainID,
in_img_dir=osp.join(coco_path, 'images'),
in_ann_dir=osp.join(coco_path, 'annotations'),
out_img_dir=out_img_dir,
out_mask_dir=out_mask_dir,
is_train=False), test_list)
print('Done!')
if __name__ == '__main__':
main()