谢昕辰 dd47cef801
[Feature] Support PIDNet (#2609)
## Motivation

Support SOTA real-time semantic segmentation method in [Paper with
code](https://paperswithcode.com/task/real-time-semantic-segmentation)

Paper: https://arxiv.org/pdf/2206.02066.pdf
Official repo: https://github.com/XuJiacong/PIDNet

## Current results

**Cityscapes**

|Model|Ref mIoU|mIoU (ours)|
|---|---|---|
|PIDNet-S|78.8|78.74|
|PIDNet-M|79.9|80.22|
|PIDNet-L|80.9|80.89|

## TODO

- [x] Support inference with official weights
- [x] Support training on Cityscapes
- [x] Update docstring
- [x] Add unit test
2023-03-15 14:55:30 +08:00

19 lines
811 B
Python

# Copyright (c) OpenMMLab. All rights reserved.
from .accuracy import Accuracy, accuracy
from .boundary_loss import BoundaryLoss
from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy,
cross_entropy, mask_cross_entropy)
from .dice_loss import DiceLoss
from .focal_loss import FocalLoss
from .lovasz_loss import LovaszLoss
from .ohem_cross_entropy_loss import OhemCrossEntropy
from .tversky_loss import TverskyLoss
from .utils import reduce_loss, weight_reduce_loss, weighted_loss
__all__ = [
'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy',
'mask_cross_entropy', 'CrossEntropyLoss', 'reduce_loss',
'weight_reduce_loss', 'weighted_loss', 'LovaszLoss', 'DiceLoss',
'FocalLoss', 'TverskyLoss', 'OhemCrossEntropy', 'BoundaryLoss'
]