mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
## Motivation Support SOTA real-time semantic segmentation method in [Paper with code](https://paperswithcode.com/task/real-time-semantic-segmentation) Paper: https://arxiv.org/pdf/2206.02066.pdf Official repo: https://github.com/XuJiacong/PIDNet ## Current results **Cityscapes** |Model|Ref mIoU|mIoU (ours)| |---|---|---| |PIDNet-S|78.8|78.74| |PIDNet-M|79.9|80.22| |PIDNet-L|80.9|80.89| ## TODO - [x] Support inference with official weights - [x] Support training on Cityscapes - [x] Update docstring - [x] Add unit test
19 lines
811 B
Python
19 lines
811 B
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
from .accuracy import Accuracy, accuracy
|
|
from .boundary_loss import BoundaryLoss
|
|
from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy,
|
|
cross_entropy, mask_cross_entropy)
|
|
from .dice_loss import DiceLoss
|
|
from .focal_loss import FocalLoss
|
|
from .lovasz_loss import LovaszLoss
|
|
from .ohem_cross_entropy_loss import OhemCrossEntropy
|
|
from .tversky_loss import TverskyLoss
|
|
from .utils import reduce_loss, weight_reduce_loss, weighted_loss
|
|
|
|
__all__ = [
|
|
'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy',
|
|
'mask_cross_entropy', 'CrossEntropyLoss', 'reduce_loss',
|
|
'weight_reduce_loss', 'weighted_loss', 'LovaszLoss', 'DiceLoss',
|
|
'FocalLoss', 'TverskyLoss', 'OhemCrossEntropy', 'BoundaryLoss'
|
|
]
|