198 lines
7.7 KiB
YAML
198 lines
7.7 KiB
YAML
Collections:
|
|
- Name: SETR
|
|
License: Apache License 2.0
|
|
Metadata:
|
|
Training Data:
|
|
- ADE20K
|
|
- Cityscapes
|
|
Paper:
|
|
Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
|
|
with Transformers
|
|
URL: https://arxiv.org/abs/2012.15840
|
|
README: configs/setr/README.md
|
|
Frameworks:
|
|
- PyTorch
|
|
Models:
|
|
- Name: setr_vit-l_naive_8xb2-160k_ade20k-512x512
|
|
In Collection: SETR
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 48.28
|
|
mIoU(ms+flip): 49.56
|
|
Config: configs/setr/setr_vit-l_naive_8xb2-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- ViT-L
|
|
- SETR
|
|
- Naive
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 18.4
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_512x512_160k_b16_ade20k/setr_naive_512x512_160k_b16_ade20k_20210619_191258-061f24f5.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_512x512_160k_b16_ade20k/setr_naive_512x512_160k_b16_ade20k_20210619_191258.log.json
|
|
Paper:
|
|
Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
|
|
with Transformers
|
|
URL: https://arxiv.org/abs/2012.15840
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11
|
|
Framework: PyTorch
|
|
- Name: setr_vit-l_pup_8xb2-160k_ade20k-512x512
|
|
In Collection: SETR
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 48.24
|
|
mIoU(ms+flip): 49.99
|
|
Config: configs/setr/setr_vit-l_pup_8xb2-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- ViT-L
|
|
- SETR
|
|
- PUP
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 19.54
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_512x512_160k_b16_ade20k/setr_pup_512x512_160k_b16_ade20k_20210619_191343-7e0ce826.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_512x512_160k_b16_ade20k/setr_pup_512x512_160k_b16_ade20k_20210619_191343.log.json
|
|
Paper:
|
|
Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
|
|
with Transformers
|
|
URL: https://arxiv.org/abs/2012.15840
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11
|
|
Framework: PyTorch
|
|
- Name: setr_vit-l-mla_8xb1-160k_ade20k-512x512
|
|
In Collection: SETR
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 47.34
|
|
mIoU(ms+flip): 49.05
|
|
Config: configs/setr/setr_vit-l-mla_8xb1-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 8
|
|
Architecture:
|
|
- ViT-L
|
|
- SETR
|
|
- MLA
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 10.96
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b8_ade20k/setr_mla_512x512_160k_b8_ade20k_20210619_191118-c6d21df0.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b8_ade20k/setr_mla_512x512_160k_b8_ade20k_20210619_191118.log.json
|
|
Paper:
|
|
Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
|
|
with Transformers
|
|
URL: https://arxiv.org/abs/2012.15840
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11
|
|
Framework: PyTorch
|
|
- Name: setr_vit-l_mla_8xb2-160k_ade20k-512x512
|
|
In Collection: SETR
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 47.39
|
|
mIoU(ms+flip): 49.37
|
|
Config: configs/setr/setr_vit-l_mla_8xb2-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- ViT-L
|
|
- SETR
|
|
- MLA
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 17.3
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b16_ade20k/setr_mla_512x512_160k_b16_ade20k_20210619_191057-f9741de7.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_512x512_160k_b16_ade20k/setr_mla_512x512_160k_b16_ade20k_20210619_191057.log.json
|
|
Paper:
|
|
Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
|
|
with Transformers
|
|
URL: https://arxiv.org/abs/2012.15840
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11
|
|
Framework: PyTorch
|
|
- Name: setr_vit-l_naive_8xb1-80k_cityscapes-768x768
|
|
In Collection: SETR
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.1
|
|
mIoU(ms+flip): 80.22
|
|
Config: configs/setr/setr_vit-l_naive_8xb1-80k_cityscapes-768x768.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- ViT-L
|
|
- SETR
|
|
- Naive
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 24.06
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_vit-large_8x1_768x768_80k_cityscapes/setr_naive_vit-large_8x1_768x768_80k_cityscapes_20211123_000505-20728e80.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_naive_vit-large_8x1_768x768_80k_cityscapes/setr_naive_vit-large_8x1_768x768_80k_cityscapes_20211123_000505.log.json
|
|
Paper:
|
|
Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
|
|
with Transformers
|
|
URL: https://arxiv.org/abs/2012.15840
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11
|
|
Framework: PyTorch
|
|
- Name: setr_vit-l_pup_8xb1-80k_cityscapes-768x768
|
|
In Collection: SETR
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.21
|
|
mIoU(ms+flip): 81.02
|
|
Config: configs/setr/setr_vit-l_pup_8xb1-80k_cityscapes-768x768.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- ViT-L
|
|
- SETR
|
|
- PUP
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 27.96
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_vit-large_8x1_768x768_80k_cityscapes/setr_pup_vit-large_8x1_768x768_80k_cityscapes_20211122_155115-f6f37b8f.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_pup_vit-large_8x1_768x768_80k_cityscapes/setr_pup_vit-large_8x1_768x768_80k_cityscapes_20211122_155115.log.json
|
|
Paper:
|
|
Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
|
|
with Transformers
|
|
URL: https://arxiv.org/abs/2012.15840
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11
|
|
Framework: PyTorch
|
|
- Name: setr_vit-l_mla_8xb1-80k_cityscapes-768x768
|
|
In Collection: SETR
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.0
|
|
mIoU(ms+flip): 79.59
|
|
Config: configs/setr/setr_vit-l_mla_8xb1-80k_cityscapes-768x768.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- ViT-L
|
|
- SETR
|
|
- MLA
|
|
Training Resources: 8x V100 GPUS
|
|
Memory (GB): 24.1
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_vit-large_8x1_768x768_80k_cityscapes/setr_mla_vit-large_8x1_768x768_80k_cityscapes_20211119_101003-7f8dccbe.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/setr/setr_mla_vit-large_8x1_768x768_80k_cityscapes/setr_mla_vit-large_8x1_768x768_80k_cityscapes_20211119_101003.log.json
|
|
Paper:
|
|
Title: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
|
|
with Transformers
|
|
URL: https://arxiv.org/abs/2012.15840
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/setr_up_head.py#L11
|
|
Framework: PyTorch
|