mmsegmentation/tests/test_evaluation/test_metrics/test_iou_metric.py

105 lines
3.7 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import shutil
from unittest import TestCase
import numpy as np
import torch
from mmengine.structures import PixelData
from mmseg.evaluation import IoUMetric
from mmseg.structures import SegDataSample
class TestIoUMetric(TestCase):
def _demo_mm_inputs(self,
batch_size=2,
image_shapes=(3, 64, 64),
num_classes=5):
"""Create a superset of inputs needed to run test or train batches.
Args:
batch_size (int): batch size. Default to 2.
image_shapes (List[tuple], Optional): image shape.
Default to (3, 64, 64)
num_classes (int): number of different classes.
Default to 5.
"""
if isinstance(image_shapes, list):
assert len(image_shapes) == batch_size
else:
image_shapes = [image_shapes] * batch_size
data_samples = []
for idx in range(batch_size):
image_shape = image_shapes[idx]
_, h, w = image_shape
data_sample = SegDataSample()
gt_semantic_seg = np.random.randint(
0, num_classes, (1, h, w), dtype=np.uint8)
gt_semantic_seg = torch.LongTensor(gt_semantic_seg)
gt_sem_seg_data = dict(data=gt_semantic_seg)
data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data)
data_samples.append(data_sample.to_dict())
return data_samples
def _demo_mm_model_output(self,
data_samples,
batch_size=2,
image_shapes=(3, 64, 64),
num_classes=5):
_, h, w = image_shapes
for data_sample in data_samples:
data_sample['seg_logits'] = dict(
data=torch.randn(num_classes, h, w))
data_sample['pred_sem_seg'] = dict(
data=torch.randint(0, num_classes, (1, h, w)))
data_sample[
'img_path'] = 'tests/data/pseudo_dataset/imgs/00000_img.jpg'
return data_samples
def test_evaluate(self):
"""Test using the metric in the same way as Evalutor."""
data_samples = self._demo_mm_inputs()
data_samples = self._demo_mm_model_output(data_samples)
iou_metric = IoUMetric(iou_metrics=['mIoU'])
iou_metric.dataset_meta = dict(
classes=['wall', 'building', 'sky', 'floor', 'tree'],
label_map=dict(),
reduce_zero_label=False)
iou_metric.process([0] * len(data_samples), data_samples)
res = iou_metric.evaluate(2)
self.assertIsInstance(res, dict)
# test save segment file in output_dir
iou_metric = IoUMetric(iou_metrics=['mIoU'], output_dir='tmp')
iou_metric.dataset_meta = dict(
classes=['wall', 'building', 'sky', 'floor', 'tree'],
label_map=dict(),
reduce_zero_label=False)
iou_metric.process([0] * len(data_samples), data_samples)
assert osp.exists('tmp')
assert osp.isfile('tmp/00000_img.png')
shutil.rmtree('tmp')
# test format_only
iou_metric = IoUMetric(
iou_metrics=['mIoU'], output_dir='tmp', format_only=True)
iou_metric.dataset_meta = dict(
classes=['wall', 'building', 'sky', 'floor', 'tree'],
label_map=dict(),
reduce_zero_label=False)
iou_metric.process([0] * len(data_samples), data_samples)
assert iou_metric.results == []
assert osp.exists('tmp')
assert osp.isfile('tmp/00000_img.png')
shutil.rmtree('tmp')