Ze Liu b6c7c77a08
[WIP] Add Swin Transformer (#511)
* add Swin Transformer

* add Swin Transformer

* fixed import

* Add some swin training settings.

* Fix some filename error.

* Fix attribute name: pretrain -> pretrained

* Upload mmcls implementation of swin transformer.

* Refactor Swin Transformer to follow mmcls style.

* Refactor init_weigths of swin_transformer.py

* Fix lint

* Match inference precision

* Add some comments

* Add swin_convert to load official style ckpt

* Remove arg: auto_pad

* 1. Complete comments for each block;

2. Correct weight convert function;

3. Fix the pad of Patch Merging;

* Clean function args.

* Fix vit unit test.

* 1. Add swin transformer unit tests;

2. Fix some pad bug;

3. Modify config to adapt new swin implementation;

* Modify config arg

* Update readme.md of swin

* Fix config arg error and Add some swin benchmark msg.

* Add MeM and ms test content for readme.md of swin transformer.

* Fix doc string of swin module

* 1. Register swin transformer to model list;

2. Modify pth url which keep meta attribute;

* Update swin.py

* Merge config settings.

* Modify config style.

* Update README.md

Add ViT link

* Modify main readme.md

Co-authored-by: Jiarui XU <xvjiarui0826@gmail.com>
Co-authored-by: sennnnn <201730271412@mail.scut.edu.cn>
Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-07-01 23:41:55 +08:00

56 lines
1.6 KiB
Python

# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
backbone_norm_cfg = dict(type='LN', requires_grad=True)
model = dict(
type='EncoderDecoder',
pretrained=None,
backbone=dict(
type='SwinTransformer',
pretrain_img_size=224,
embed_dims=96,
patch_size=4,
window_size=7,
mlp_ratio=4,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
strides=(4, 2, 2, 2),
out_indices=(0, 1, 2, 3),
qkv_bias=True,
qk_scale=None,
patch_norm=True,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.3,
use_abs_pos_embed=False,
act_cfg=dict(type='GELU'),
norm_cfg=backbone_norm_cfg,
pretrain_style='official'),
decode_head=dict(
type='UPerHead',
in_channels=[96, 192, 384, 768],
in_index=[0, 1, 2, 3],
pool_scales=(1, 2, 3, 6),
channels=512,
dropout_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
auxiliary_head=dict(
type='FCNHead',
in_channels=384,
in_index=2,
channels=256,
num_convs=1,
concat_input=False,
dropout_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode='whole'))