Ze Liu b6c7c77a08
[WIP] Add Swin Transformer (#511)
* add Swin Transformer

* add Swin Transformer

* fixed import

* Add some swin training settings.

* Fix some filename error.

* Fix attribute name: pretrain -> pretrained

* Upload mmcls implementation of swin transformer.

* Refactor Swin Transformer to follow mmcls style.

* Refactor init_weigths of swin_transformer.py

* Fix lint

* Match inference precision

* Add some comments

* Add swin_convert to load official style ckpt

* Remove arg: auto_pad

* 1. Complete comments for each block;

2. Correct weight convert function;

3. Fix the pad of Patch Merging;

* Clean function args.

* Fix vit unit test.

* 1. Add swin transformer unit tests;

2. Fix some pad bug;

3. Modify config to adapt new swin implementation;

* Modify config arg

* Update readme.md of swin

* Fix config arg error and Add some swin benchmark msg.

* Add MeM and ms test content for readme.md of swin transformer.

* Fix doc string of swin module

* 1. Register swin transformer to model list;

2. Modify pth url which keep meta attribute;

* Update swin.py

* Merge config settings.

* Modify config style.

* Update README.md

Add ViT link

* Modify main readme.md

Co-authored-by: Jiarui XU <xvjiarui0826@gmail.com>
Co-authored-by: sennnnn <201730271412@mail.scut.edu.cn>
Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-07-01 23:41:55 +08:00

65 lines
2.0 KiB
Python

import pytest
import torch
from mmseg.models.backbones import SwinTransformer
def test_swin_transformer():
"""Test Swin Transformer backbone."""
with pytest.raises(AssertionError):
# We only support 'official' or 'mmcls' for this arg.
model = SwinTransformer(pretrain_style='swin')
with pytest.raises(TypeError):
# Pretrained arg must be str or None.
model = SwinTransformer(pretrained=123)
with pytest.raises(AssertionError):
# Because swin use non-overlapping patch embed, so the stride of patch
# embed must be equal to patch size.
model = SwinTransformer(strides=(2, 2, 2, 2), patch_size=4)
# Test absolute position embedding
temp = torch.randn((1, 3, 224, 224))
model = SwinTransformer(pretrain_img_size=224, use_abs_pos_embed=True)
model.init_weights()
model(temp)
# Test patch norm
model = SwinTransformer(patch_norm=False)
model(temp)
# Test pretrain img size
model = SwinTransformer(pretrain_img_size=(224, ))
with pytest.raises(AssertionError):
model = SwinTransformer(pretrain_img_size=(224, 224, 224))
# Test normal inference
temp = torch.randn((1, 3, 512, 512))
model = SwinTransformer()
outs = model(temp)
assert outs[0].shape == (1, 96, 128, 128)
assert outs[1].shape == (1, 192, 64, 64)
assert outs[2].shape == (1, 384, 32, 32)
assert outs[3].shape == (1, 768, 16, 16)
# Test abnormal inference
temp = torch.randn((1, 3, 511, 511))
model = SwinTransformer()
outs = model(temp)
assert outs[0].shape == (1, 96, 128, 128)
assert outs[1].shape == (1, 192, 64, 64)
assert outs[2].shape == (1, 384, 32, 32)
assert outs[3].shape == (1, 768, 16, 16)
# Test abnormal inference
temp = torch.randn((1, 3, 112, 137))
model = SwinTransformer()
outs = model(temp)
assert outs[0].shape == (1, 96, 28, 35)
assert outs[1].shape == (1, 192, 14, 18)
assert outs[2].shape == (1, 384, 7, 9)
assert outs[3].shape == (1, 768, 4, 5)