149 lines
5.3 KiB
Python
149 lines
5.3 KiB
Python
import argparse
|
|
import os
|
|
|
|
import mmcv
|
|
import torch
|
|
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
|
|
from mmcv.runner import get_dist_info, init_dist, load_checkpoint
|
|
from mmcv.utils import DictAction
|
|
|
|
from mmseg.apis import multi_gpu_test, single_gpu_test
|
|
from mmseg.datasets import build_dataloader, build_dataset
|
|
from mmseg.models import build_segmentor
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='mmseg test (and eval) a model')
|
|
parser.add_argument('config', help='test config file path')
|
|
parser.add_argument('checkpoint', help='checkpoint file')
|
|
parser.add_argument(
|
|
'--aug-test', action='store_true', help='Use Flip and Multi scale aug')
|
|
parser.add_argument('--out', help='output result file in pickle format')
|
|
parser.add_argument(
|
|
'--format-only',
|
|
action='store_true',
|
|
help='Format the output results without perform evaluation. It is'
|
|
'useful when you want to format the result to a specific format and '
|
|
'submit it to the test server')
|
|
parser.add_argument(
|
|
'--eval',
|
|
type=str,
|
|
nargs='+',
|
|
help='evaluation metrics, which depends on the dataset, e.g., "mIoU"'
|
|
' for generic datasets, and "cityscapes" for Cityscapes')
|
|
parser.add_argument('--show', action='store_true', help='show results')
|
|
parser.add_argument(
|
|
'--show-dir', help='directory where painted images will be saved')
|
|
parser.add_argument(
|
|
'--gpu-collect',
|
|
action='store_true',
|
|
help='whether to use gpu to collect results.')
|
|
parser.add_argument(
|
|
'--tmpdir',
|
|
help='tmp directory used for collecting results from multiple '
|
|
'workers, available when gpu_collect is not specified')
|
|
parser.add_argument(
|
|
'--options', nargs='+', action=DictAction, help='custom options')
|
|
parser.add_argument(
|
|
'--eval-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='custom options for evaluation')
|
|
parser.add_argument(
|
|
'--launcher',
|
|
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
|
default='none',
|
|
help='job launcher')
|
|
parser.add_argument('--local_rank', type=int, default=0)
|
|
args = parser.parse_args()
|
|
if 'LOCAL_RANK' not in os.environ:
|
|
os.environ['LOCAL_RANK'] = str(args.local_rank)
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
assert args.out or args.eval or args.format_only or args.show \
|
|
or args.show_dir, \
|
|
('Please specify at least one operation (save/eval/format/show the '
|
|
'results / save the results) with the argument "--out", "--eval"'
|
|
', "--format-only", "--show" or "--show-dir"')
|
|
|
|
if args.eval and args.format_only:
|
|
raise ValueError('--eval and --format_only cannot be both specified')
|
|
|
|
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
|
|
raise ValueError('The output file must be a pkl file.')
|
|
|
|
cfg = mmcv.Config.fromfile(args.config)
|
|
if args.options is not None:
|
|
cfg.merge_from_dict(args.options)
|
|
# set cudnn_benchmark
|
|
if cfg.get('cudnn_benchmark', False):
|
|
torch.backends.cudnn.benchmark = True
|
|
if args.aug_test:
|
|
# hard code index
|
|
cfg.data.test.pipeline[1].img_ratios = [
|
|
0.5, 0.75, 1.0, 1.25, 1.5, 1.75
|
|
]
|
|
cfg.data.test.pipeline[1].flip = True
|
|
cfg.model.pretrained = None
|
|
cfg.data.test.test_mode = True
|
|
|
|
# init distributed env first, since logger depends on the dist info.
|
|
if args.launcher == 'none':
|
|
distributed = False
|
|
else:
|
|
distributed = True
|
|
init_dist(args.launcher, **cfg.dist_params)
|
|
|
|
# build the dataloader
|
|
# TODO: support multiple images per gpu (only minor changes are needed)
|
|
dataset = build_dataset(cfg.data.test)
|
|
data_loader = build_dataloader(
|
|
dataset,
|
|
samples_per_gpu=1,
|
|
workers_per_gpu=cfg.data.workers_per_gpu,
|
|
dist=distributed,
|
|
shuffle=False)
|
|
|
|
# build the model and load checkpoint
|
|
cfg.model.train_cfg = None
|
|
model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg'))
|
|
checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
|
|
model.CLASSES = checkpoint['meta']['CLASSES']
|
|
model.PALETTE = checkpoint['meta']['PALETTE']
|
|
|
|
efficient_test = False
|
|
if args.eval_options is not None:
|
|
efficient_test = args.eval_options.get('efficient_test', False)
|
|
|
|
if not distributed:
|
|
model = MMDataParallel(model, device_ids=[0])
|
|
outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
|
|
efficient_test)
|
|
else:
|
|
model = MMDistributedDataParallel(
|
|
model.cuda(),
|
|
device_ids=[torch.cuda.current_device()],
|
|
broadcast_buffers=False)
|
|
outputs = multi_gpu_test(model, data_loader, args.tmpdir,
|
|
args.gpu_collect, efficient_test)
|
|
|
|
rank, _ = get_dist_info()
|
|
if rank == 0:
|
|
if args.out:
|
|
print(f'\nwriting results to {args.out}')
|
|
mmcv.dump(outputs, args.out)
|
|
kwargs = {} if args.eval_options is None else args.eval_options
|
|
if args.format_only:
|
|
dataset.format_results(outputs, **kwargs)
|
|
if args.eval:
|
|
dataset.evaluate(outputs, args.eval, **kwargs)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|