Pan Zhang 990063e59b
[Feature] Support DDRNet (#2855)
Thanks for your contribution and we appreciate it a lot. The following
instructions would make your pull request more healthy and more easily
get feedback. If you do not understand some items, don't worry, just
make the pull request and seek help from maintainers.

## Motivation

Support DDRNet
Paper: [Deep Dual-resolution Networks for Real-time and Accurate
Semantic Segmentation of Road Scenes](https://arxiv.org/pdf/2101.06085)
official Code: https://github.com/ydhongHIT/DDRNet


There is already a PR
https://github.com/open-mmlab/mmsegmentation/pull/1722 , but it has been
inactive for a long time.

## Current Result

### Cityscapes

#### inference with converted official weights

| Method | Backbone      | mIoU(official) | mIoU(converted weight) |
| ------ | ------------- | -------------- | ---------------------- |
| DDRNet | DDRNet23-slim | 77.8           | 77.84                  |
| DDRNet | DDRNet23 | 79.5 | 79.53 |

#### training with converted pretrained backbone

| Method | Backbone | Crop Size | Lr schd | Inf time(fps) | Device |
mIoU | mIoU(ms+flip) | config | download |
| ------ | ------------- | --------- | ------- | ------- | -------- |
----- | ------------- | ------------ | ------------ |
| DDRNet | DDRNet23-slim | 1024x1024 | 120000 | 85.85 | RTX 8000 | 77.85
| 79.80 |
[config](https://github.com/whu-pzhang/mmsegmentation/blob/ddrnet/configs/ddrnet/ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024.py)
| model \| log |
| DDRNet | DDRNet23 | 1024x1024 | 120000 | 33.41 | RTX 8000 | 79.53 |
80.98 |
[config](https://github.com/whu-pzhang/mmsegmentation/blob/ddrnet/configs/ddrnet/ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024.py)
| model \| log |


The converted pretrained backbone weights download link:

1.
[ddrnet23s_in1k_mmseg.pth](https://drive.google.com/file/d/1Ni4F1PMGGjuld-1S9fzDTmneLfpMuPTG/view?usp=sharing)
2.
[ddrnet23_in1k_mmseg.pth](https://drive.google.com/file/d/11rsijC1xOWB6B0LgNQkAG-W6e1OdbCyJ/view?usp=sharing)

## To do

- [x] support inference with converted official weights
- [x] support training on cityscapes dataset

---------

Co-authored-by: xiexinch <xiexinch@outlook.com>
2023-04-27 09:44:30 +08:00

35 lines
1.2 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from .beit import BEiT
from .bisenetv1 import BiSeNetV1
from .bisenetv2 import BiSeNetV2
from .cgnet import CGNet
from .ddrnet import DDRNet
from .erfnet import ERFNet
from .fast_scnn import FastSCNN
from .hrnet import HRNet
from .icnet import ICNet
from .mae import MAE
from .mit import MixVisionTransformer
from .mobilenet_v2 import MobileNetV2
from .mobilenet_v3 import MobileNetV3
from .mscan import MSCAN
from .pidnet import PIDNet
from .resnest import ResNeSt
from .resnet import ResNet, ResNetV1c, ResNetV1d
from .resnext import ResNeXt
from .stdc import STDCContextPathNet, STDCNet
from .swin import SwinTransformer
from .timm_backbone import TIMMBackbone
from .twins import PCPVT, SVT
from .unet import UNet
from .vit import VisionTransformer
__all__ = [
'ResNet', 'ResNetV1c', 'ResNetV1d', 'ResNeXt', 'HRNet', 'FastSCNN',
'ResNeSt', 'MobileNetV2', 'UNet', 'CGNet', 'MobileNetV3',
'VisionTransformer', 'SwinTransformer', 'MixVisionTransformer',
'BiSeNetV1', 'BiSeNetV2', 'ICNet', 'TIMMBackbone', 'ERFNet', 'PCPVT',
'SVT', 'STDCNet', 'STDCContextPathNet', 'BEiT', 'MAE', 'PIDNet', 'MSCAN',
'DDRNet'
]