mmsegmentation/configs/danet/danet.yml

302 lines
9.7 KiB
YAML

Collections:
- Name: DANet
Metadata:
Training Data:
- Cityscapes
- ADE20K
- Pascal VOC 2012 + Aug
Paper:
URL: https://arxiv.org/abs/1809.02983
Title: Dual Attention Network for Scene Segmentation
README: configs/danet/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/da_head.py#L76
Version: v0.17.0
Converted From:
Code: https://github.com/junfu1115/DANet/
Models:
- Name: danet_r50-d8_512x1024_40k_cityscapes
In Collection: DANet
Metadata:
backbone: R-50-D8
crop size: (512,1024)
lr schd: 40000
inference time (ms/im):
- value: 375.94
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 7.4
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.74
Config: configs/danet/danet_r50-d8_512x1024_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_40k_cityscapes/danet_r50-d8_512x1024_40k_cityscapes_20200605_191324-c0dbfa5f.pth
- Name: danet_r101-d8_512x1024_40k_cityscapes
In Collection: DANet
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 40000
inference time (ms/im):
- value: 502.51
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,1024)
Training Memory (GB): 10.9
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.52
Config: configs/danet/danet_r101-d8_512x1024_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_40k_cityscapes/danet_r101-d8_512x1024_40k_cityscapes_20200605_200831-c57a7157.pth
- Name: danet_r50-d8_769x769_40k_cityscapes
In Collection: DANet
Metadata:
backbone: R-50-D8
crop size: (769,769)
lr schd: 40000
inference time (ms/im):
- value: 641.03
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 8.8
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.88
mIoU(ms+flip): 80.62
Config: configs/danet/danet_r50-d8_769x769_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_40k_cityscapes/danet_r50-d8_769x769_40k_cityscapes_20200530_025703-76681c60.pth
- Name: danet_r101-d8_769x769_40k_cityscapes
In Collection: DANet
Metadata:
backbone: R-101-D8
crop size: (769,769)
lr schd: 40000
inference time (ms/im):
- value: 934.58
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (769,769)
Training Memory (GB): 12.8
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.88
mIoU(ms+flip): 81.47
Config: configs/danet/danet_r101-d8_769x769_40k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_40k_cityscapes/danet_r101-d8_769x769_40k_cityscapes_20200530_025717-dcb7fd4e.pth
- Name: danet_r50-d8_512x1024_80k_cityscapes
In Collection: DANet
Metadata:
backbone: R-50-D8
crop size: (512,1024)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.34
Config: configs/danet/danet_r50-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x1024_80k_cityscapes/danet_r50-d8_512x1024_80k_cityscapes_20200607_133029-2bfa2293.pth
- Name: danet_r101-d8_512x1024_80k_cityscapes
In Collection: DANet
Metadata:
backbone: R-101-D8
crop size: (512,1024)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.41
Config: configs/danet/danet_r101-d8_512x1024_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x1024_80k_cityscapes/danet_r101-d8_512x1024_80k_cityscapes_20200607_132918-955e6350.pth
- Name: danet_r50-d8_769x769_80k_cityscapes
In Collection: DANet
Metadata:
backbone: R-50-D8
crop size: (769,769)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.27
mIoU(ms+flip): 80.96
Config: configs/danet/danet_r50-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_769x769_80k_cityscapes/danet_r50-d8_769x769_80k_cityscapes_20200607_132954-495689b4.pth
- Name: danet_r101-d8_769x769_80k_cityscapes
In Collection: DANet
Metadata:
backbone: R-101-D8
crop size: (769,769)
lr schd: 80000
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.47
mIoU(ms+flip): 82.02
Config: configs/danet/danet_r101-d8_769x769_80k_cityscapes.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_769x769_80k_cityscapes/danet_r101-d8_769x769_80k_cityscapes_20200607_132918-f3a929e7.pth
- Name: danet_r50-d8_512x512_80k_ade20k
In Collection: DANet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 47.17
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 11.5
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 41.66
mIoU(ms+flip): 42.9
Config: configs/danet/danet_r50-d8_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_80k_ade20k/danet_r50-d8_512x512_80k_ade20k_20200615_015125-edb18e08.pth
- Name: danet_r101-d8_512x512_80k_ade20k
In Collection: DANet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 70.52
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 15.0
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.64
mIoU(ms+flip): 45.19
Config: configs/danet/danet_r101-d8_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_80k_ade20k/danet_r101-d8_512x512_80k_ade20k_20200615_015126-d0357c73.pth
- Name: danet_r50-d8_512x512_160k_ade20k
In Collection: DANet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.45
mIoU(ms+flip): 43.25
Config: configs/danet/danet_r50-d8_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_160k_ade20k/danet_r50-d8_512x512_160k_ade20k_20200616_082340-9cb35dcd.pth
- Name: danet_r101-d8_512x512_160k_ade20k
In Collection: DANet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 160000
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 44.17
mIoU(ms+flip): 45.02
Config: configs/danet/danet_r101-d8_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_160k_ade20k/danet_r101-d8_512x512_160k_ade20k_20200616_082348-23bf12f9.pth
- Name: danet_r50-d8_512x512_20k_voc12aug
In Collection: DANet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 20000
inference time (ms/im):
- value: 47.76
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 6.5
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 74.45
mIoU(ms+flip): 75.69
Config: configs/danet/danet_r50-d8_512x512_20k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_20k_voc12aug/danet_r50-d8_512x512_20k_voc12aug_20200618_070026-9e9e3ab3.pth
- Name: danet_r101-d8_512x512_20k_voc12aug
In Collection: DANet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 20000
inference time (ms/im):
- value: 72.67
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 9.9
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.02
mIoU(ms+flip): 77.23
Config: configs/danet/danet_r101-d8_512x512_20k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_20k_voc12aug/danet_r101-d8_512x512_20k_voc12aug_20200618_070026-d48d23b2.pth
- Name: danet_r50-d8_512x512_40k_voc12aug
In Collection: DANet
Metadata:
backbone: R-50-D8
crop size: (512,512)
lr schd: 40000
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.37
mIoU(ms+flip): 77.29
Config: configs/danet/danet_r50-d8_512x512_40k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r50-d8_512x512_40k_voc12aug/danet_r50-d8_512x512_40k_voc12aug_20200613_235526-426e3a64.pth
- Name: danet_r101-d8_512x512_40k_voc12aug
In Collection: DANet
Metadata:
backbone: R-101-D8
crop size: (512,512)
lr schd: 40000
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.51
mIoU(ms+flip): 77.32
Config: configs/danet/danet_r101-d8_512x512_40k_voc12aug.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/danet/danet_r101-d8_512x512_40k_voc12aug/danet_r101-d8_512x512_40k_voc12aug_20200613_223031-788e232a.pth