mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:00:29 +08:00
* change md2yml file * update metafile * update twins In Collection automatically * fix twins metafile * fix twins metafile * all metafile use value of Method * update collect name * update collect name * fix some typo * fix FCN D6 * change JPU to FastFCN * fix some typos in DNLNet, NonLocalNet, SETR, Segmenter, STDC, FastSCNN * fix typo in stdc * fix typo in DNLNet and UNet * fix NonLocalNet typo
38 lines
1.2 KiB
YAML
38 lines
1.2 KiB
YAML
Collections:
|
|
- Name: ERFNet
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
Paper:
|
|
URL: http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17tits.pdf
|
|
Title: 'ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation'
|
|
README: configs/erfnet/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.20.0/mmseg/models/backbones/erfnet.py#L321
|
|
Version: v0.20.0
|
|
Converted From:
|
|
Code: https://github.com/Eromera/erfnet_pytorch
|
|
Models:
|
|
- Name: erfnet_fcn_4x4_512x1024_160k_cityscapes
|
|
In Collection: ERFNet
|
|
Metadata:
|
|
backbone: ERFNet
|
|
crop size: (512,1024)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 65.53
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 6.04
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 71.08
|
|
mIoU(ms+flip): 72.6
|
|
Config: configs/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/erfnet/erfnet_fcn_4x4_512x1024_160k_cityscapes/erfnet_fcn_4x4_512x1024_160k_cityscapes_20211126_082056-03d333ed.pth
|