236 lines
8.1 KiB
YAML
236 lines
8.1 KiB
YAML
Collections:
|
|
- Name: FastFCN
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- ADE20K
|
|
Paper:
|
|
URL: https://arxiv.org/abs/1903.11816
|
|
Title: 'FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation'
|
|
README: configs/fastfcn/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/jpu.py#L12
|
|
Version: v0.18.0
|
|
Converted From:
|
|
Code: https://github.com/wuhuikai/FastFCN
|
|
Models:
|
|
- Name: fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes
|
|
In Collection: FastFCN
|
|
Metadata:
|
|
backbone: R-50-D32
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 378.79
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 5.67
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.12
|
|
mIoU(ms+flip): 80.58
|
|
Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes_20210928_053722-5d1a2648.pth
|
|
- Name: fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes
|
|
In Collection: FastFCN
|
|
Metadata:
|
|
backbone: R-50-D32
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Training Memory (GB): 9.79
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.52
|
|
mIoU(ms+flip): 80.91
|
|
Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes_20210924_214357-72220849.pth
|
|
- Name: fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes
|
|
In Collection: FastFCN
|
|
Metadata:
|
|
backbone: R-50-D32
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 227.27
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 5.67
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.26
|
|
mIoU(ms+flip): 80.86
|
|
Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes_20210928_053722-57749bed.pth
|
|
- Name: fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes
|
|
In Collection: FastFCN
|
|
Metadata:
|
|
backbone: R-50-D32
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Training Memory (GB): 9.94
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.76
|
|
mIoU(ms+flip): 80.03
|
|
Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes_20210925_061841-77e87b0a.pth
|
|
- Name: fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes
|
|
In Collection: FastFCN
|
|
Metadata:
|
|
backbone: R-50-D32
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 209.64
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 8.15
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.97
|
|
mIoU(ms+flip): 79.92
|
|
Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes_20210928_030036-78da5046.pth
|
|
- Name: fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes
|
|
In Collection: FastFCN
|
|
Metadata:
|
|
backbone: R-50-D32
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Training Memory (GB): 15.45
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.6
|
|
mIoU(ms+flip): 80.25
|
|
Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes/fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes_20210926_093217-e1eb6dbb.pth
|
|
- Name: fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k
|
|
In Collection: FastFCN
|
|
Metadata:
|
|
backbone: R-50-D32
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 82.92
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 8.46
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 41.88
|
|
mIoU(ms+flip): 42.91
|
|
Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_80k_ade20k_20211013_190619-3aa40f2d.pth
|
|
- Name: fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k
|
|
In Collection: FastFCN
|
|
Metadata:
|
|
backbone: R-50-D32
|
|
crop size: (512,1024)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 43.58
|
|
mIoU(ms+flip): 44.92
|
|
Config: configs/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_aspp_512x512_160k_ade20k_20211008_152246-27036aee.pth
|
|
- Name: fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k
|
|
In Collection: FastFCN
|
|
Metadata:
|
|
backbone: R-50-D32
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 52.06
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 8.02
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 41.4
|
|
mIoU(ms+flip): 42.12
|
|
Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_80k_ade20k_20210930_225137-993d07c8.pth
|
|
- Name: fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k
|
|
In Collection: FastFCN
|
|
Metadata:
|
|
backbone: R-50-D32
|
|
crop size: (512,1024)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.63
|
|
mIoU(ms+flip): 43.71
|
|
Config: configs/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k/fastfcn_r50-d32_jpu_psp_512x512_160k_ade20k_20211008_105455-e8f5a2fd.pth
|
|
- Name: fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k
|
|
In Collection: FastFCN
|
|
Metadata:
|
|
backbone: R-50-D32
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 58.04
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 9.67
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 40.88
|
|
mIoU(ms+flip): 42.36
|
|
Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_80k_ade20k_20210930_225214-65aef6dd.pth
|
|
- Name: fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k
|
|
In Collection: FastFCN
|
|
Metadata:
|
|
backbone: R-50-D32
|
|
crop size: (512,1024)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.5
|
|
mIoU(ms+flip): 44.21
|
|
Config: configs/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fastfcn/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k/fastfcn_r50-d32_jpu_enc_512x512_160k_ade20k_20211008_105456-d875ce3c.pth
|