mmsegmentation/configs/deeplabv3plus
Kingdrone b997a13e28
[Feature] Support ISPRS Potsdam Dataset. (#1097)
* add isprs potsdam dataset

* add isprs dataset configs

* fix lint error

* fix potsdam conversion bug

* fix error in potsdam class

* fix error in potsdam class

* add vaihingen dataset

* add vaihingen dataset

* add vaihingen dataset

* fix some description errors.

* fix some description errors.

* fix some description errors.

* upload models & logs of Potsdam

* remove vaihingen and add unit test

* add chinese readme

* add pseudodataset

* use mmcv and add class_names

* use f-string

* add new dataset unittest

* add docstring and remove global variables args

* fix metafile error in PSPNet

* fix pretrained value

* Add dataset info

* fix typo

Co-authored-by: MengzhangLI <mcmong@pku.edu.cn>
2022-01-18 14:15:15 +08:00
..
README.md [Feature] Support ISPRS Potsdam Dataset. (#1097) 2022-01-18 14:15:15 +08:00
deeplabv3plus.yml [Feature] Support ISPRS Potsdam Dataset. (#1097) 2022-01-18 14:15:15 +08:00
deeplabv3plus_r18-d8_512x512_80k_loveda.py [Feature] Support LoveDA dataset (#1028) 2021-11-24 19:41:19 +08:00
deeplabv3plus_r18-d8_512x512_80k_potsdam.py [Feature] Support ISPRS Potsdam Dataset. (#1097) 2022-01-18 14:15:15 +08:00
deeplabv3plus_r18-d8_512x1024_80k_cityscapes.py Add more models (#316) 2020-12-29 17:56:06 -08:00
deeplabv3plus_r18-d8_769x769_80k_cityscapes.py Add more models (#316) 2020-12-29 17:56:06 -08:00
deeplabv3plus_r18b-d8_512x1024_80k_cityscapes.py Add more models (#316) 2020-12-29 17:56:06 -08:00
deeplabv3plus_r18b-d8_769x769_80k_cityscapes.py Add more models (#316) 2020-12-29 17:56:06 -08:00
deeplabv3plus_r50-d8_480x480_40k_pascal_context.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
deeplabv3plus_r50-d8_480x480_40k_pascal_context_59.py Add support for Pascal Context 59 classes (#459) 2021-04-19 21:20:54 -07:00
deeplabv3plus_r50-d8_480x480_80k_pascal_context.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
deeplabv3plus_r50-d8_480x480_80k_pascal_context_59.py Add support for Pascal Context 59 classes (#459) 2021-04-19 21:20:54 -07:00
deeplabv3plus_r50-d8_512x512_20k_voc12aug.py init commit 2020-07-10 02:39:01 +08:00
deeplabv3plus_r50-d8_512x512_40k_voc12aug.py init commit 2020-07-10 02:39:01 +08:00
deeplabv3plus_r50-d8_512x512_80k_ade20k.py [Bug fix] Fixed ADE20k test (#359) 2021-01-24 02:17:59 -08:00
deeplabv3plus_r50-d8_512x512_80k_loveda.py [Feature] Support LoveDA dataset (#1028) 2021-11-24 19:41:19 +08:00
deeplabv3plus_r50-d8_512x512_80k_potsdam.py [Feature] Support ISPRS Potsdam Dataset. (#1097) 2022-01-18 14:15:15 +08:00
deeplabv3plus_r50-d8_512x512_160k_ade20k.py [Bug fix] Fixed ADE20k test (#359) 2021-01-24 02:17:59 -08:00
deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py init commit 2020-07-10 02:39:01 +08:00
deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py init commit 2020-07-10 02:39:01 +08:00
deeplabv3plus_r50-d8_769x769_40k_cityscapes.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
deeplabv3plus_r50-d8_769x769_80k_cityscapes.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
deeplabv3plus_r50b-d8_512x1024_80k_cityscapes.py Add more models (#316) 2020-12-29 17:56:06 -08:00
deeplabv3plus_r50b-d8_769x769_80k_cityscapes.py Add more models (#316) 2020-12-29 17:56:06 -08:00
deeplabv3plus_r101-d8_480x480_40k_pascal_context.py Add Pascal Context to mmsegmentation (#133) 2020-09-22 14:56:13 +08:00
deeplabv3plus_r101-d8_480x480_40k_pascal_context_59.py Add support for Pascal Context 59 classes (#459) 2021-04-19 21:20:54 -07:00
deeplabv3plus_r101-d8_480x480_80k_pascal_context.py Add Pascal Context to mmsegmentation (#133) 2020-09-22 14:56:13 +08:00
deeplabv3plus_r101-d8_480x480_80k_pascal_context_59.py Add support for Pascal Context 59 classes (#459) 2021-04-19 21:20:54 -07:00
deeplabv3plus_r101-d8_512x512_20k_voc12aug.py init commit 2020-07-10 02:39:01 +08:00
deeplabv3plus_r101-d8_512x512_40k_voc12aug.py init commit 2020-07-10 02:39:01 +08:00
deeplabv3plus_r101-d8_512x512_80k_ade20k.py init commit 2020-07-10 02:39:01 +08:00
deeplabv3plus_r101-d8_512x512_80k_loveda.py [Feature] Support LoveDA dataset (#1028) 2021-11-24 19:41:19 +08:00
deeplabv3plus_r101-d8_512x512_80k_potsdam.py [Feature] Support ISPRS Potsdam Dataset. (#1097) 2022-01-18 14:15:15 +08:00
deeplabv3plus_r101-d8_512x512_160k_ade20k.py init commit 2020-07-10 02:39:01 +08:00
deeplabv3plus_r101-d8_512x1024_40k_cityscapes.py init commit 2020-07-10 02:39:01 +08:00
deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py init commit 2020-07-10 02:39:01 +08:00
deeplabv3plus_r101-d8_769x769_40k_cityscapes.py init commit 2020-07-10 02:39:01 +08:00
deeplabv3plus_r101-d8_769x769_80k_cityscapes.py init commit 2020-07-10 02:39:01 +08:00
deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py [Fix] Remove `fp16` folder in `configs`. (#1031) 2021-11-15 19:14:57 +08:00
deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes.py [Feature] Add OS16 DeepLab (#154) 2020-09-29 20:00:48 +08:00
deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes.py [Feature] Add OS16 DeepLab (#154) 2020-09-29 20:00:48 +08:00
deeplabv3plus_r101b-d8_512x1024_80k_cityscapes.py Add more models (#316) 2020-12-29 17:56:06 -08:00
deeplabv3plus_r101b-d8_769x769_80k_cityscapes.py Add more models (#316) 2020-12-29 17:56:06 -08:00

README.md

Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation

Introduction

Official Repo

Code Snippet

Abstract

Spatial pyramid pooling module or encode-decoder structure are used in deep neural networks for semantic segmentation task. The former networks are able to encode multi-scale contextual information by probing the incoming features with filters or pooling operations at multiple rates and multiple effective fields-of-view, while the latter networks can capture sharper object boundaries by gradually recovering the spatial information. In this work, we propose to combine the advantages from both methods. Specifically, our proposed model, DeepLabv3+, extends DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries. We further explore the Xception model and apply the depthwise separable convolution to both Atrous Spatial Pyramid Pooling and decoder modules, resulting in a faster and stronger encoder-decoder network. We demonstrate the effectiveness of the proposed model on PASCAL VOC 2012 and Cityscapes datasets, achieving the test set performance of 89.0% and 82.1% without any post-processing. Our paper is accompanied with a publicly available reference implementation of the proposed models in Tensorflow at this https URL.

DeepLabV3+ (CVPR'2018)
@inproceedings{deeplabv3plus2018,
  title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation},
  author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam},
  booktitle={ECCV},
  year={2018}
}

Results and models

:::{note} D-8/D-16 here corresponding to the output stride 8/16 setting for DeepLab series. MG-124 stands for multi-grid dilation in the last stage of ResNet. :::

Cityscapes

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
DeepLabV3+ R-50-D8 512x1024 40000 7.5 3.94 79.61 81.01 config model | log
DeepLabV3+ R-101-D8 512x1024 40000 11 2.60 80.21 81.82 config model | log
DeepLabV3+ R-50-D8 769x769 40000 8.5 1.72 78.97 80.46 config model | log
DeepLabV3+ R-101-D8 769x769 40000 12.5 1.15 79.46 80.50 config model | log
DeepLabV3+ R-18-D8 512x1024 80000 2.2 14.27 76.89 78.76 config model | log
DeepLabV3+ R-50-D8 512x1024 80000 - - 80.09 81.13 config model | log
DeepLabV3+ R-101-D8 512x1024 80000 - - 80.97 82.03 config model | log
DeepLabV3+ (FP16) R-101-D8 512x1024 80000 6.35 7.87 80.46 - config model | log
DeepLabV3+ R-18-D8 769x769 80000 2.5 5.74 76.26 77.91 config model | log
DeepLabV3+ R-50-D8 769x769 80000 - - 79.83 81.48 config model | log
DeepLabV3+ R-101-D8 769x769 80000 - - 80.98 82.18 config model | log
DeepLabV3+ R-101-D16-MG124 512x1024 40000 5.8 7.48 79.09 80.36 config model | log
DeepLabV3+ R-101-D16-MG124 512x1024 80000 9.9 - 79.90 81.33 config model | log
DeepLabV3+ R-18b-D8 512x1024 80000 2.1 14.95 75.87 77.52 config model | log
DeepLabV3+ R-50b-D8 512x1024 80000 7.4 3.94 80.28 81.44 config model | log
DeepLabV3+ R-101b-D8 512x1024 80000 10.9 2.60 80.16 81.41 config model | log
DeepLabV3+ R-18b-D8 769x769 80000 2.4 5.96 76.36 78.24 config model | log
DeepLabV3+ R-50b-D8 769x769 80000 8.4 1.72 79.41 80.56 config model | log
DeepLabV3+ R-101b-D8 769x769 80000 12.3 1.10 79.88 81.46 config model | log

ADE20K

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
DeepLabV3+ R-50-D8 512x512 80000 10.6 21.01 42.72 43.75 config model | log
DeepLabV3+ R-101-D8 512x512 80000 14.1 14.16 44.60 46.06 config model | log
DeepLabV3+ R-50-D8 512x512 160000 - - 43.95 44.93 config model | log
DeepLabV3+ R-101-D8 512x512 160000 - - 45.47 46.35 config model | log

Pascal VOC 2012 + Aug

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
DeepLabV3+ R-50-D8 512x512 20000 7.6 21 75.93 77.50 config model | log
DeepLabV3+ R-101-D8 512x512 20000 11 13.88 77.22 78.59 config model | log
DeepLabV3+ R-50-D8 512x512 40000 - - 76.81 77.57 config model | log
DeepLabV3+ R-101-D8 512x512 40000 - - 78.62 79.53 config model | log

Pascal Context

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
DeepLabV3+ R-101-D8 480x480 40000 - 9.09 47.30 48.47 config model | log
DeepLabV3+ R-101-D8 480x480 80000 - - 47.23 48.26 config model | log

Pascal Context 59

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
DeepLabV3+ R-101-D8 480x480 40000 - - 52.86 54.54 config model | log
DeepLabV3+ R-101-D8 480x480 80000 - - 53.2 54.67 config model | log

LoveDA

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
DeepLabV3+ R-18-D8 512x512 80000 1.93 25.57 50.28 50.47 config model | log
DeepLabV3+ R-50-D8 512x512 80000 7.37 6.00 50.99 50.65 config model | log
DeepLabV3+ R-101-D8 512x512 80000 10.84 4.33 51.47 51.32 config model | log

Potsdam

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
DeepLabV3+ R-18-D8 512x512 80000 1.91 81.68 77.09 78.44 config model | log
DeepLabV3+ R-50-D8 512x512 80000 7.36 26.44 78.33 79.27 config model | log
DeepLabV3+ R-101-D8 512x512 80000 10.83 17.56 78.7 79.47 config model | log

Note:

  • FP16 means Mixed Precision (FP16) is adopted in training.