mmsegmentation/configs/emanet
Jerry Jiarui XU faaf29e668
[Improvement] Move train_cfg/test_cfg inside model (#341)
* [Improvement] Move train_cfg/test_cfg inside model

* fixed config dict

* fixed config dict
2021-01-19 17:06:23 -08:00
..
README.md [Improvement] Add tags for each README.md (#340) 2021-01-10 21:35:09 -08:00
emanet_r50-d8_512x1024_80k_cityscapes.py [Feature] Support EMANet (#34) 2020-09-07 13:06:59 +08:00
emanet_r50-d8_769x769_80k_cityscapes.py [Improvement] Move train_cfg/test_cfg inside model (#341) 2021-01-19 17:06:23 -08:00
emanet_r101-d8_512x1024_80k_cityscapes.py [Feature] Support EMANet (#34) 2020-09-07 13:06:59 +08:00
emanet_r101-d8_769x769_80k_cityscapes.py [Feature] Support EMANet (#34) 2020-09-07 13:06:59 +08:00

README.md

Expectation-Maximization Attention Networks for Semantic Segmentation

Introduction

[ALGORITHM]

@inproceedings{li2019expectation,
  title={Expectation-maximization attention networks for semantic segmentation},
  author={Li, Xia and Zhong, Zhisheng and Wu, Jianlong and Yang, Yibo and Lin, Zhouchen and Liu, Hong},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={9167--9176},
  year={2019}
}

Results and models

Cityscapes

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) download
EMANet R-50-D8 512x1024 80000 5.4 4.58 77.59 79.44 model | log
EMANet R-101-D8 512x1024 80000 6.2 2.87 79.10 81.21 model | log
EMANet R-50-D8 769x769 80000 8.9 1.97 79.33 80.49 model | log
EMANet R-101-D8 769x769 80000 10.1 1.22 79.62 81.00 model | log