Expectation-Maximization Attention Networks for Semantic Segmentation
Introduction
[ALGORITHM]
@inproceedings{li2019expectation,
title={Expectation-maximization attention networks for semantic segmentation},
author={Li, Xia and Zhong, Zhisheng and Wu, Jianlong and Yang, Yibo and Lin, Zhouchen and Liu, Hong},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={9167--9176},
year={2019}
}
Results and models
Cityscapes
Method |
Backbone |
Crop Size |
Lr schd |
Mem (GB) |
Inf time (fps) |
mIoU |
mIoU(ms+flip) |
download |
EMANet |
R-50-D8 |
512x1024 |
80000 |
5.4 |
4.58 |
77.59 |
79.44 |
model | log |
EMANet |
R-101-D8 |
512x1024 |
80000 |
6.2 |
2.87 |
79.10 |
81.21 |
model | log |
EMANet |
R-50-D8 |
769x769 |
80000 |
8.9 |
1.97 |
79.33 |
80.49 |
model | log |
EMANet |
R-101-D8 |
769x769 |
80000 |
10.1 |
1.22 |
79.62 |
81.00 |
model | log |