mmsegmentation/tests/test_models/test_heads/test_apc_head.py

59 lines
1.7 KiB
Python

import pytest
import torch
from mmseg.models.decode_heads import APCHead
from .utils import _conv_has_norm, to_cuda
def test_apc_head():
with pytest.raises(AssertionError):
# pool_scales must be list|tuple
APCHead(in_channels=32, channels=16, num_classes=19, pool_scales=1)
# test no norm_cfg
head = APCHead(in_channels=32, channels=16, num_classes=19)
assert not _conv_has_norm(head, sync_bn=False)
# test with norm_cfg
head = APCHead(
in_channels=32,
channels=16,
num_classes=19,
norm_cfg=dict(type='SyncBN'))
assert _conv_has_norm(head, sync_bn=True)
# fusion=True
inputs = [torch.randn(1, 32, 45, 45)]
head = APCHead(
in_channels=32,
channels=16,
num_classes=19,
pool_scales=(1, 2, 3),
fusion=True)
if torch.cuda.is_available():
head, inputs = to_cuda(head, inputs)
assert head.fusion is True
assert head.acm_modules[0].pool_scale == 1
assert head.acm_modules[1].pool_scale == 2
assert head.acm_modules[2].pool_scale == 3
outputs = head(inputs)
assert outputs.shape == (1, head.num_classes, 45, 45)
# fusion=False
inputs = [torch.randn(1, 32, 45, 45)]
head = APCHead(
in_channels=32,
channels=16,
num_classes=19,
pool_scales=(1, 2, 3),
fusion=False)
if torch.cuda.is_available():
head, inputs = to_cuda(head, inputs)
assert head.fusion is False
assert head.acm_modules[0].pool_scale == 1
assert head.acm_modules[1].pool_scale == 2
assert head.acm_modules[2].pool_scale == 3
outputs = head(inputs)
assert outputs.shape == (1, head.num_classes, 45, 45)