mmsegmentation/docs_zh-CN/tutorials/training_tricks.md
Jerry Jiarui XU 0529952270
[Doc] Add Chinese Documentation (#666)
* Add chinese doc base (#593)

* [Doc] Add Chinese doc for useful_tools_md (#642)

* get_started_docs_zh

* inference_zh.md

* train_zh.md

* get_started_zh.md

* train_zh.md

* get_started_zh

* fix nospace between ZH and ENG

* change README_zh-CN link

* checkout space again

* checkout space again

* checkout space again

* pipeline

* cus_model

* cus_model

* cus_model

* runtime_md

* dataset_prepare

* useful_tools

* refine

* Update useful_tools.md

* Update useful_tools.md

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>

* [Doc] Add Chinese doc for get_started (#615)

* get_started_docs_zh

* inference_zh.md

* train_zh.md

* get_started_zh.md

* train_zh.md

* get_started_zh

* fix nospace between ZH and ENG

* change README_zh-CN link

* checkout space again

* checkout space again

* checkout space again

* get_started_md

* refine_get_started_md

* [Doc] Add Chinese doc for tutorial03_tutorial_datapipeline_md (#629)

* get_started_docs_zh

* inference_zh.md

* train_zh.md

* get_started_zh.md

* train_zh.md

* get_started_zh

* fix nospace between ZH and ENG

* change README_zh-CN link

* checkout space again

* checkout space again

* checkout space again

* pipeline

* refine

* Update data_pipeline.md

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>

* [Doc] Add Chinese doc for tutorials04_customized_models_md (#630)

* get_started_docs_zh

* inference_zh.md

* train_zh.md

* get_started_zh.md

* train_zh.md

* get_started_zh

* fix nospace between ZH and ENG

* change README_zh-CN link

* checkout space again

* checkout space again

* checkout space again

* pipeline

* cus_model

* cus_model

* cus_model

* refine

* refine

* Update customize_models.md

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>

* [Doc] Add Chinese doc for dataset_prepare_md (#640)

* get_started_docs_zh

* inference_zh.md

* train_zh.md

* get_started_zh.md

* train_zh.md

* get_started_zh

* fix nospace between ZH and ENG

* change README_zh-CN link

* checkout space again

* checkout space again

* checkout space again

* pipeline

* cus_model

* cus_model

* cus_model

* runtime_md

* dataset_prepare

* Update dataset_prepare.md

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>

* [Doc] Add Chinese doc for tutorials05_training_tricks_md (#631)

* get_started_docs_zh

* inference_zh.md

* train_zh.md

* get_started_zh.md

* train_zh.md

* get_started_zh

* fix nospace between ZH and ENG

* change README_zh-CN link

* checkout space again

* checkout space again

* checkout space again

* pipeline

* cus_model

* cus_model

* cus_model

* traning tricks md

* traning tricks md

* refine

* refine

* refine

* Update training_tricks.md

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>

* [Doc] Add Chinese doc for tutorials06_customized_runtime_md (#637)

* get_started_docs_zh

* inference_zh.md

* train_zh.md

* get_started_zh.md

* train_zh.md

* get_started_zh

* fix nospace between ZH and ENG

* change README_zh-CN link

* checkout space again

* checkout space again

* checkout space again

* pipeline

* cus_model

* cus_model

* cus_model

* runtime_md

* Update customize_runtime.md

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>

* [Doc] Add Chinese doc for tutorials01_config_md (#628)

* get_started_docs_zh

* inference_zh.md

* train_zh.md

* get_started_zh.md

* train_zh.md

* get_started_zh

* fix nospace between ZH and ENG

* change README_zh-CN link

* checkout space again

* checkout space again

* checkout space again

* new_config_md

* new_config_md1

* new_config_md1

* refine

* refine

* Update config.md

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>

* [Doc] Add Chinese for modelzoo (#597)

* [Doc] Add Chinese for modelzoo

* add missing

* [Doc] Add Chinese doc for tutorial02_customized_dataset_md (#620)

* get_started_docs_zh

* inference_zh.md

* train_zh.md

* get_started_zh.md

* train_zh.md

* get_started_zh

* fix nospace between ZH and ENG

* change README_zh-CN link

* checkout space again

* checkout space again

* checkout space again

* tutorial_customized_dataset

* refine

* Update customize_datasets.md

* fixconflict

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>

* [Doc] Add Chinese doc for train.md (#616)

* get_started_docs_zh

* inference_zh.md

* train_zh.md

* get_started_zh.md

* train_zh.md

* get_started_zh

* fix nospace between ZH and ENG

* change README_zh-CN link

* checkout space again

* checkout space again

* checkout space again

* train_md

* refine

* refine_last

* refine_last

* refine_last

* refine_last

* refine_last

* temp

* refine_last

* qwe

Co-authored-by: yuanzhang <yuanzhang@yuanzhangdeMacBook-Pro.local>

* [Doc] Add Chinese doc for inference.md (#617)

* get_started_docs_zh

* inference_zh.md

* train_zh.md

* get_started_zh.md

* train_zh.md

* get_started_zh

* fix nospace between ZH and ENG

* change README_zh-CN link

* checkout space again

* checkout space again

* checkout space again

* inference_zh_md

* Update docs_zh-CN/inference.md

Directly delete this sentence?

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>

* qwe

* temp

* qw

* Update docs_zh-CN/inference.md

* Update docs_zh-CN/inference.md

* Update docs_zh-CN/inference.md

* Update docs_zh-CN/inference.md

* Update docs_zh-CN/inference.md

* Update inference.md

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>

* fixed some dir

* fixed typo

Co-authored-by: MengzhangLI <mcmong@pku.edu.cn>
Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
Co-authored-by: yuanzhang <yuanzhang@yuanzhangdeMacBook-Pro.local>
2021-07-03 08:54:32 -07:00

2.3 KiB
Raw Blame History

教程 5: 训练技巧

MMSegmentation 支持如下训练技巧:

主干网络和解码头组件使用不同的学习率 (Learning Rate, LR)

在语义分割里,一些方法会让解码头组件的学习率大于主干网络的学习率,这样可以获得更好的表现或更快的收敛。

在 MMSegmentation 里面您也可以在配置文件里添加如下行来让解码头组件的学习率是主干组件的10倍。

optimizer=dict(
    paramwise_cfg = dict(
        custom_keys={
            'head': dict(lr_mult=10.)}))

通过这种修改,任何被分组到 'head' 的参数的学习率都将乘以10。您也可以参照 MMCV 文档 获取更详细的信息。

在线难样本挖掘 (Online Hard Example Mining, OHEM)

对于训练时采样,我们在 这里 做了像素采样器。 如下例子是使用 PSPNet 训练并采用 OHEM 策略的配置:

_base_ = './pspnet_r50-d8_512x1024_40k_cityscapes.py'
model=dict(
    decode_head=dict(
        sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=100000)) )

通过这种方式只有置信分数在0.7以下的像素值点会被拿来训练。在训练时我们至少要保留100000个像素值点。如果 thresh 并未被指定,前 min_kept 个损失的像素值点才会被选择。

类别平衡损失 (Class Balanced Loss)

对于不平衡类别分布的数据集,您也许可以改变每个类别的损失权重。这里以 cityscapes 数据集为例:

_base_ = './pspnet_r50-d8_512x1024_40k_cityscapes.py'
model=dict(
    decode_head=dict(
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0,
            # DeepLab 对 cityscapes 使用这种权重
            class_weight=[0.8373, 0.9180, 0.8660, 1.0345, 1.0166, 0.9969, 0.9754,
                        1.0489, 0.8786, 1.0023, 0.9539, 0.9843, 1.1116, 0.9037,
                        1.0865, 1.0955, 1.0865, 1.1529, 1.0507])))

class_weight 将被作为 weight 参数,传递给 CrossEntropyLoss。详细信息请参照 PyTorch 文档