mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
## Motivation Support ISNet. paper link: [ISNet: Integrate Image-Level and Semantic-Level Context for Semantic Segmentation](https://openaccess.thecvf.com/content/ICCV2021/papers/Jin_ISNet_Integrate_Image-Level_and_Semantic-Level_Context_for_Semantic_Segmentation_ICCV_2021_paper.pdf) ## Modification Add ISNet decoder head. Add ISNet config.
2.5 KiB
2.5 KiB
ISNet
ISNet: Integrate Image-Level and Semantic-Level Context for Semantic Segmentation
Description
This is an implementation of ISNet. Official Repo
Usage
Prerequisites
- Python 3.7
- PyTorch 1.6 or higher
- MIM v0.33 or higher
- MMSegmentation v1.0.0rc2 or higher
All the commands below rely on the correct configuration of PYTHONPATH
, which should point to the project's directory so that Python can locate the module files. In isnet/
root directory, run the following line to add the current directory to PYTHONPATH
:
export PYTHONPATH=`pwd`:$PYTHONPATH
Training commands
mim train mmsegmentation configs/isnet_r50-d8_8xb2-160k_cityscapes-512x1024.py --work-dir work_dirs/isnet
To train on multiple GPUs, e.g. 8 GPUs, run the following command:
mim train mmsegmentation configs/isnet_r50-d8_8xb2-160k_cityscapes-512x1024.py --work-dir work_dirs/isnet --launcher pytorch --gpus 8
Testing commands
mim test mmsegmentation configs/isnet_r50-d8_8xb2-160k_cityscapes-512x1024.py --work-dir work_dirs/isnet --checkpoint ${CHECKPOINT_PATH}
Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
---|---|---|---|---|---|---|---|---|---|
ISNet | R-50-D8 | 512x1024 | - | - | - | 79.32 | 80.88 | config | model |
Citation
@article{Jin2021ISNetII,
title={ISNet: Integrate Image-Level and Semantic-Level Context for Semantic Segmentation},
author={Zhenchao Jin and B. Liu and Qi Chu and Nenghai Yu},
journal={2021 IEEE/CVF International Conference on Computer Vision (ICCV)},
year={2021},
pages={7169-7178}
}