mmsegmentation/tests/test_models/test_backbones/test_mit.py

123 lines
4.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmseg.models.backbones import MixVisionTransformer
from mmseg.models.backbones.mit import (EfficientMultiheadAttention, MixFFN,
TransformerEncoderLayer)
def test_mit():
with pytest.raises(TypeError):
# Pretrained represents pretrain url and must be str or None.
MixVisionTransformer(pretrained=123)
# Test normal input
H, W = (224, 224)
temp = torch.randn((1, 3, H, W))
model = MixVisionTransformer(
embed_dims=32, num_heads=[1, 2, 5, 8], out_indices=(0, 1, 2, 3))
model.init_weights()
outs = model(temp)
assert outs[0].shape == (1, 32, H // 4, W // 4)
assert outs[1].shape == (1, 64, H // 8, W // 8)
assert outs[2].shape == (1, 160, H // 16, W // 16)
assert outs[3].shape == (1, 256, H // 32, W // 32)
# Test non-squared input
H, W = (224, 256)
temp = torch.randn((1, 3, H, W))
outs = model(temp)
assert outs[0].shape == (1, 32, H // 4, W // 4)
assert outs[1].shape == (1, 64, H // 8, W // 8)
assert outs[2].shape == (1, 160, H // 16, W // 16)
assert outs[3].shape == (1, 256, H // 32, W // 32)
# Test MixFFN
FFN = MixFFN(64, 128)
hw_shape = (32, 32)
token_len = 32 * 32
temp = torch.randn((1, token_len, 64))
# Self identity
out = FFN(temp, hw_shape)
assert out.shape == (1, token_len, 64)
# Out identity
outs = FFN(temp, hw_shape, temp)
assert out.shape == (1, token_len, 64)
# Test EfficientMHA
MHA = EfficientMultiheadAttention(64, 2)
hw_shape = (32, 32)
token_len = 32 * 32
temp = torch.randn((1, token_len, 64))
# Self identity
out = MHA(temp, hw_shape)
assert out.shape == (1, token_len, 64)
# Out identity
outs = MHA(temp, hw_shape, temp)
assert out.shape == (1, token_len, 64)
# Test TransformerEncoderLayer with checkpoint forward
block = TransformerEncoderLayer(
embed_dims=64, num_heads=4, feedforward_channels=256, with_cp=True)
assert block.with_cp
x = torch.randn(1, 56 * 56, 64)
x_out = block(x, (56, 56))
assert x_out.shape == torch.Size([1, 56 * 56, 64])
def test_mit_init():
path = 'PATH_THAT_DO_NOT_EXIST'
# Test all combinations of pretrained and init_cfg
# pretrained=None, init_cfg=None
model = MixVisionTransformer(pretrained=None, init_cfg=None)
assert model.init_cfg is None
model.init_weights()
# pretrained=None
# init_cfg loads pretrain from an non-existent file
model = MixVisionTransformer(
pretrained=None, init_cfg=dict(type='Pretrained', checkpoint=path))
assert model.init_cfg == dict(type='Pretrained', checkpoint=path)
# Test loading a checkpoint from an non-existent file
with pytest.raises(OSError):
model.init_weights()
# pretrained=None
# init_cfg=123, whose type is unsupported
model = MixVisionTransformer(pretrained=None, init_cfg=123)
with pytest.raises(TypeError):
model.init_weights()
# pretrained loads pretrain from an non-existent file
# init_cfg=None
model = MixVisionTransformer(pretrained=path, init_cfg=None)
assert model.init_cfg == dict(type='Pretrained', checkpoint=path)
# Test loading a checkpoint from an non-existent file
with pytest.raises(OSError):
model.init_weights()
# pretrained loads pretrain from an non-existent file
# init_cfg loads pretrain from an non-existent file
with pytest.raises(AssertionError):
MixVisionTransformer(
pretrained=path, init_cfg=dict(type='Pretrained', checkpoint=path))
with pytest.raises(AssertionError):
MixVisionTransformer(pretrained=path, init_cfg=123)
# pretrain=123, whose type is unsupported
# init_cfg=None
with pytest.raises(TypeError):
MixVisionTransformer(pretrained=123, init_cfg=None)
# pretrain=123, whose type is unsupported
# init_cfg loads pretrain from an non-existent file
with pytest.raises(AssertionError):
MixVisionTransformer(
pretrained=123, init_cfg=dict(type='Pretrained', checkpoint=path))
# pretrain=123, whose type is unsupported
# init_cfg=123, whose type is unsupported
with pytest.raises(AssertionError):
MixVisionTransformer(pretrained=123, init_cfg=123)