mmsegmentation/tests/test_models/test_backbones/test_vit.py

186 lines
6.1 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmseg.models.backbones.vit import (TransformerEncoderLayer,
VisionTransformer)
from .utils import check_norm_state
def test_vit_backbone():
with pytest.raises(TypeError):
# pretrained must be a string path
model = VisionTransformer()
model.init_weights(pretrained=0)
with pytest.raises(TypeError):
# img_size must be int or tuple
model = VisionTransformer(img_size=512.0)
with pytest.raises(TypeError):
# out_indices must be int ,list or tuple
model = VisionTransformer(out_indices=1.)
with pytest.raises(TypeError):
# test upsample_pos_embed function
x = torch.randn(1, 196)
VisionTransformer.resize_pos_embed(x, 512, 512, 224, 224, 'bilinear')
with pytest.raises(AssertionError):
# The length of img_size tuple must be lower than 3.
VisionTransformer(img_size=(224, 224, 224))
with pytest.raises(TypeError):
# Pretrained must be None or Str.
VisionTransformer(pretrained=123)
with pytest.raises(AssertionError):
# with_cls_token must be True when output_cls_token == True
VisionTransformer(with_cls_token=False, output_cls_token=True)
# Test img_size isinstance tuple
imgs = torch.randn(1, 3, 224, 224)
model = VisionTransformer(img_size=(224, ))
model.init_weights()
model(imgs)
# Test img_size isinstance tuple
imgs = torch.randn(1, 3, 224, 224)
model = VisionTransformer(img_size=(224, 224))
model(imgs)
# Test norm_eval = True
model = VisionTransformer(norm_eval=True)
model.train()
# Test ViT backbone with input size of 224 and patch size of 16
model = VisionTransformer()
model.init_weights()
model.train()
assert check_norm_state(model.modules(), True)
# Test normal size input image
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 14, 14)
# Test large size input image
imgs = torch.randn(1, 3, 256, 256)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 16, 16)
# Test small size input image
imgs = torch.randn(1, 3, 32, 32)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 2, 2)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 14, 14)
# Test unbalanced size input image
imgs = torch.randn(1, 3, 112, 224)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 7, 14)
# Test irregular input image
imgs = torch.randn(1, 3, 234, 345)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 15, 22)
# Test with_cp=True
model = VisionTransformer(with_cp=True)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 14, 14)
# Test with_cls_token=False
model = VisionTransformer(with_cls_token=False)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 14, 14)
# Test final norm
model = VisionTransformer(final_norm=True)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 14, 14)
# Test patch norm
model = VisionTransformer(patch_norm=True)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 14, 14)
# Test output_cls_token
model = VisionTransformer(with_cls_token=True, output_cls_token=True)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[0][0].shape == (1, 768, 14, 14)
assert feat[0][1].shape == (1, 768)
# Test TransformerEncoderLayer with checkpoint forward
block = TransformerEncoderLayer(
embed_dims=64, num_heads=4, feedforward_channels=256, with_cp=True)
assert block.with_cp
x = torch.randn(1, 56 * 56, 64)
x_out = block(x)
assert x_out.shape == torch.Size([1, 56 * 56, 64])
def test_vit_init():
path = 'PATH_THAT_DO_NOT_EXIST'
# Test all combinations of pretrained and init_cfg
# pretrained=None, init_cfg=None
model = VisionTransformer(pretrained=None, init_cfg=None)
assert model.init_cfg is None
model.init_weights()
# pretrained=None
# init_cfg loads pretrain from an non-existent file
model = VisionTransformer(
pretrained=None, init_cfg=dict(type='Pretrained', checkpoint=path))
assert model.init_cfg == dict(type='Pretrained', checkpoint=path)
# Test loading a checkpoint from an non-existent file
with pytest.raises(OSError):
model.init_weights()
# pretrained=None
# init_cfg=123, whose type is unsupported
model = VisionTransformer(pretrained=None, init_cfg=123)
with pytest.raises(TypeError):
model.init_weights()
# pretrained loads pretrain from an non-existent file
# init_cfg=None
model = VisionTransformer(pretrained=path, init_cfg=None)
assert model.init_cfg == dict(type='Pretrained', checkpoint=path)
# Test loading a checkpoint from an non-existent file
with pytest.raises(OSError):
model.init_weights()
# pretrained loads pretrain from an non-existent file
# init_cfg loads pretrain from an non-existent file
with pytest.raises(AssertionError):
model = VisionTransformer(
pretrained=path, init_cfg=dict(type='Pretrained', checkpoint=path))
with pytest.raises(AssertionError):
model = VisionTransformer(pretrained=path, init_cfg=123)
# pretrain=123, whose type is unsupported
# init_cfg=None
with pytest.raises(TypeError):
model = VisionTransformer(pretrained=123, init_cfg=None)
# pretrain=123, whose type is unsupported
# init_cfg loads pretrain from an non-existent file
with pytest.raises(AssertionError):
model = VisionTransformer(
pretrained=123, init_cfg=dict(type='Pretrained', checkpoint=path))
# pretrain=123, whose type is unsupported
# init_cfg=123, whose type is unsupported
with pytest.raises(AssertionError):
model = VisionTransformer(pretrained=123, init_cfg=123)