mmsegmentation/configs/_base_/models/upernet_convnext.py
MengzhangLI befdc93dc3 [Feature] Support ConvNext (#1216)
* upload original backbone and configs

* ConvNext Refactor

* ConvNext Refactor

* convnext customization refactor with mmseg style

* convnext customization refactor with mmseg style

* add ade20k_640x640.py

* upload files for training

* delete dist_optimizer_hook and remove layer_decay_optimizer_constructor

* check max(out_indices) < num_stages

* add unittest

* fix lint error

* use MMClassification backbone

* fix bugs in base_1k

* add mmcls in requirements/mminstall.txt

* add mmcls in requirements/mminstall.txt

* fix drop_path_rate and layer_scale_init_value

* use logger.info instead of print

* add mmcls in runtime.txt

* fix f string && delete

* add doctring in LearningRateDecayOptimizerConstructor and fix mmcls version in requirements

* fix typo in LearningRateDecayOptimizerConstructor

* use ConvNext models in unit test for LearningRateDecayOptimizerConstructor

* add unit test

* fix typo

* fix typo

* add layer_wise and fix redundant backbone.downsample_norm in it

* fix unit test

* give a ground truth lr_scale and weight_decay

* upload models and readme

* delete 'backbone.stem_norm' and 'backbone.downsample_norm' in get_num_layer()

* fix unit test and use mmcls url

* update md2yml.py and metafile

* fix typo
2022-03-04 15:52:01 +08:00

45 lines
1.5 KiB
Python

norm_cfg = dict(type='SyncBN', requires_grad=True)
custom_imports = dict(imports='mmcls.models', allow_failed_imports=False)
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-base_3rdparty_32xb128-noema_in1k_20220301-2a0ee547.pth' # noqa
model = dict(
type='EncoderDecoder',
pretrained=None,
backbone=dict(
type='mmcls.ConvNeXt',
arch='base',
out_indices=[0, 1, 2, 3],
drop_path_rate=0.4,
layer_scale_init_value=1.0,
gap_before_final_norm=False,
init_cfg=dict(
type='Pretrained', checkpoint=checkpoint_file,
prefix='backbone.')),
decode_head=dict(
type='UPerHead',
in_channels=[128, 256, 512, 1024],
in_index=[0, 1, 2, 3],
pool_scales=(1, 2, 3, 6),
channels=512,
dropout_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
auxiliary_head=dict(
type='FCNHead',
in_channels=384,
in_index=2,
channels=256,
num_convs=1,
concat_input=False,
dropout_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode='whole'))