* dice loss * format code, add docstring and calculate denominator without valid_mask * minor change * restore * add metafile * add manifest.in and add config at setup.py * add requirements * modify manifest * modify manifest * Update MANIFEST.in * add metafile * add metadata * fix typo * Update metafile.yml * Update metafile.yml * minor change * Update metafile.yml * add subfix * fix mmshow * add more metafile * add config to model_zoo * fix bug * Update mminstall.txt * [fix] Add models * [Fix] Add collections * [fix] Modify collection name * [Fix] Set datasets to unet metafile * [Fix] Modify collection names * complement inference time |
||
---|---|---|
.. | ||
README.md | ||
deeplabv3_m-v2-d8_512x512_160k_ade20k.py | ||
deeplabv3_m-v2-d8_512x1024_80k_cityscapes.py | ||
deeplabv3plus_m-v2-d8_512x512_160k_ade20k.py | ||
deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes.py | ||
fcn_m-v2-d8_512x512_160k_ade20k.py | ||
fcn_m-v2-d8_512x1024_80k_cityscapes.py | ||
metafile.yml | ||
pspnet_m-v2-d8_512x512_160k_ade20k.py | ||
pspnet_m-v2-d8_512x1024_80k_cityscapes.py |
README.md
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Introduction
@inproceedings{sandler2018mobilenetv2,
title={Mobilenetv2: Inverted residuals and linear bottlenecks},
author={Sandler, Mark and Howard, Andrew and Zhu, Menglong and Zhmoginov, Andrey and Chen, Liang-Chieh},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={4510--4520},
year={2018}
}
Results and models
Cityscapes
Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
---|---|---|---|---|---|---|---|---|---|
FCN | M-V2-D8 | 512x1024 | 80000 | 3.4 | 14.2 | 61.54 | - | config | model | log |
PSPNet | M-V2-D8 | 512x1024 | 80000 | 3.6 | 11.2 | 70.23 | - | config | model | log |
DeepLabV3 | M-V2-D8 | 512x1024 | 80000 | 3.9 | 8.4 | 73.84 | - | config | model | log |
DeepLabV3+ | M-V2-D8 | 512x1024 | 80000 | 5.1 | 8.4 | 75.20 | - | config | model | log |
ADE20k
Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
---|---|---|---|---|---|---|---|---|---|
FCN | M-V2-D8 | 512x512 | 160000 | 6.5 | 64.4 | 19.71 | - | config | model | log |
PSPNet | M-V2-D8 | 512x512 | 160000 | 6.5 | 57.7 | 29.68 | - | config | model | log |
DeepLabV3 | M-V2-D8 | 512x512 | 160000 | 6.8 | 39.9 | 34.08 | - | config | model | log |
DeepLabV3+ | M-V2-D8 | 512x512 | 160000 | 8.2 | 43.1 | 34.02 | - | config | model | log |