432 lines
14 KiB
YAML
432 lines
14 KiB
YAML
Collections:
|
|
- Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- ' HRNet backbone'
|
|
- ' ResNet backbone'
|
|
- ADE20K
|
|
- Pascal VOC 2012 + Aug
|
|
Name: ocrnet
|
|
Models:
|
|
- Config: configs/ocrnet/ocrnet_hr18s_512x1024_40k_cityscapes.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,1024)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
value: 95.69
|
|
lr schd: 40000
|
|
memory (GB): 3.5
|
|
Name: ocrnet_hr18s_512x1024_40k_cityscapes
|
|
Results:
|
|
Dataset: ' HRNet backbone'
|
|
Metrics:
|
|
mIoU: 74.3
|
|
mIoU(ms+flip): 75.95
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_40k_cityscapes/ocrnet_hr18s_512x1024_40k_cityscapes_20200601_033304-fa2436c2.pth
|
|
- Config: configs/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,1024)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
value: 133.33
|
|
lr schd: 40000
|
|
memory (GB): 4.7
|
|
Name: ocrnet_hr18_512x1024_40k_cityscapes
|
|
Results:
|
|
Dataset: ' HRNet backbone'
|
|
Metrics:
|
|
mIoU: 77.72
|
|
mIoU(ms+flip): 79.49
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320-401c5bdd.pth
|
|
- Config: configs/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,1024)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
value: 236.97
|
|
lr schd: 40000
|
|
memory (GB): 8.0
|
|
Name: ocrnet_hr48_512x1024_40k_cityscapes
|
|
Results:
|
|
Dataset: ' HRNet backbone'
|
|
Metrics:
|
|
mIoU: 80.58
|
|
mIoU(ms+flip): 81.79
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336-55b32491.pth
|
|
- Config: configs/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Name: ocrnet_hr18s_512x1024_80k_cityscapes
|
|
Results:
|
|
Dataset: ' HRNet backbone'
|
|
Metrics:
|
|
mIoU: 77.16
|
|
mIoU(ms+flip): 78.66
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735-55979e63.pth
|
|
- Config: configs/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Name: ocrnet_hr18_512x1024_80k_cityscapes
|
|
Results:
|
|
Dataset: ' HRNet backbone'
|
|
Metrics:
|
|
mIoU: 78.57
|
|
mIoU(ms+flip): 80.46
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521-c2e1dd4a.pth
|
|
- Config: configs/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Name: ocrnet_hr48_512x1024_80k_cityscapes
|
|
Results:
|
|
Dataset: ' HRNet backbone'
|
|
Metrics:
|
|
mIoU: 80.7
|
|
mIoU(ms+flip): 81.87
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752-9076bcdf.pth
|
|
- Config: configs/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,1024)
|
|
lr schd: 160000
|
|
Name: ocrnet_hr18s_512x1024_160k_cityscapes
|
|
Results:
|
|
Dataset: ' HRNet backbone'
|
|
Metrics:
|
|
mIoU: 78.45
|
|
mIoU(ms+flip): 79.97
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005-f4a7af28.pth
|
|
- Config: configs/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,1024)
|
|
lr schd: 160000
|
|
Name: ocrnet_hr18_512x1024_160k_cityscapes
|
|
Results:
|
|
Dataset: ' HRNet backbone'
|
|
Metrics:
|
|
mIoU: 79.47
|
|
mIoU(ms+flip): 80.91
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001-b9172d0c.pth
|
|
- Config: configs/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,1024)
|
|
lr schd: 160000
|
|
Name: ocrnet_hr48_512x1024_160k_cityscapes
|
|
Results:
|
|
Dataset: ' HRNet backbone'
|
|
Metrics:
|
|
mIoU: 81.35
|
|
mIoU(ms+flip): 82.7
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037-dfbf1b0c.pth
|
|
- Config: configs/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
Name: ocrnet_r101-d8_512x1024_40k_b8_cityscapes
|
|
Results:
|
|
Dataset: ' ResNet backbone'
|
|
Metrics:
|
|
mIoU: 80.09
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes-02ac0f13.pth
|
|
- Config: configs/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
value: 331.13
|
|
lr schd: 40000
|
|
memory (GB): 8.8
|
|
Name: ocrnet_r101-d8_512x1024_40k_b16_cityscapes
|
|
Results:
|
|
Dataset: ' ResNet backbone'
|
|
Metrics:
|
|
mIoU: 80.3
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes-db500f80.pth
|
|
- Config: configs/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
value: 331.13
|
|
lr schd: 80000
|
|
memory (GB): 8.8
|
|
Name: ocrnet_r101-d8_512x1024_80k_b16_cityscapes
|
|
Results:
|
|
Dataset: ' ResNet backbone'
|
|
Metrics:
|
|
mIoU: 80.81
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes-78688424.pth
|
|
- Config: configs/ocrnet/ocrnet_hr18s_512x512_80k_ade20k.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
value: 34.51
|
|
lr schd: 80000
|
|
memory (GB): 6.7
|
|
Name: ocrnet_hr18s_512x512_80k_ade20k
|
|
Results:
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 35.06
|
|
mIoU(ms+flip): 35.8
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600-e80b62af.pth
|
|
- Config: configs/ocrnet/ocrnet_hr18_512x512_80k_ade20k.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
value: 52.83
|
|
lr schd: 80000
|
|
memory (GB): 7.9
|
|
Name: ocrnet_hr18_512x512_80k_ade20k
|
|
Results:
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 37.79
|
|
mIoU(ms+flip): 39.16
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157-d173d83b.pth
|
|
- Config: configs/ocrnet/ocrnet_hr48_512x512_80k_ade20k.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
value: 58.86
|
|
lr schd: 80000
|
|
memory (GB): 11.2
|
|
Name: ocrnet_hr48_512x512_80k_ade20k
|
|
Results:
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 43.0
|
|
mIoU(ms+flip): 44.3
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518-d168c2d1.pth
|
|
- Config: configs/ocrnet/ocrnet_hr18s_512x512_160k_ade20k.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Name: ocrnet_hr18s_512x512_160k_ade20k
|
|
Results:
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 37.19
|
|
mIoU(ms+flip): 38.4
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505-8e913058.pth
|
|
- Config: configs/ocrnet/ocrnet_hr18_512x512_160k_ade20k.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Name: ocrnet_hr18_512x512_160k_ade20k
|
|
Results:
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 39.32
|
|
mIoU(ms+flip): 40.8
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940-d8fcd9d1.pth
|
|
- Config: configs/ocrnet/ocrnet_hr48_512x512_160k_ade20k.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Name: ocrnet_hr48_512x512_160k_ade20k
|
|
Results:
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 43.25
|
|
mIoU(ms+flip): 44.88
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705-a073726d.pth
|
|
- Config: configs/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
value: 31.7
|
|
lr schd: 20000
|
|
memory (GB): 3.5
|
|
Name: ocrnet_hr18s_512x512_20k_voc12aug
|
|
Results:
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 71.7
|
|
mIoU(ms+flip): 73.84
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913-02b04fcb.pth
|
|
- Config: configs/ocrnet/ocrnet_hr18_512x512_20k_voc12aug.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
value: 50.23
|
|
lr schd: 20000
|
|
memory (GB): 4.7
|
|
Name: ocrnet_hr18_512x512_20k_voc12aug
|
|
Results:
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 74.75
|
|
mIoU(ms+flip): 77.11
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932-8954cbb7.pth
|
|
- Config: configs/ocrnet/ocrnet_hr48_512x512_20k_voc12aug.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
value: 56.09
|
|
lr schd: 20000
|
|
memory (GB): 8.1
|
|
Name: ocrnet_hr48_512x512_20k_voc12aug
|
|
Results:
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 77.72
|
|
mIoU(ms+flip): 79.87
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932-9e82080a.pth
|
|
- Config: configs/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Name: ocrnet_hr18s_512x512_40k_voc12aug
|
|
Results:
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 72.76
|
|
mIoU(ms+flip): 74.6
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025-42b587ac.pth
|
|
- Config: configs/ocrnet/ocrnet_hr18_512x512_40k_voc12aug.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Name: ocrnet_hr18_512x512_40k_voc12aug
|
|
Results:
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 74.98
|
|
mIoU(ms+flip): 77.4
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958-714302be.pth
|
|
- Config: configs/ocrnet/ocrnet_hr48_512x512_40k_voc12aug.py
|
|
In Collection: ocrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Name: ocrnet_hr48_512x512_40k_voc12aug
|
|
Results:
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 77.14
|
|
mIoU(ms+flip): 79.71
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958-255bc5ce.pth
|