162 lines
6.2 KiB
YAML
162 lines
6.2 KiB
YAML
Models:
|
|
- Name: upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: Swin-T
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 47.48
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 5.02
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 44.41
|
|
mIoU(ms+flip): 45.79
|
|
Config: configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth
|
|
- Name: upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: Swin-S
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 67.93
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 6.17
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 47.72
|
|
mIoU(ms+flip): 49.24
|
|
Config: configs/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth
|
|
- Name: upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: Swin-B
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 79.05
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 7.61
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 47.99
|
|
mIoU(ms+flip): 49.57
|
|
Config: configs/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth
|
|
- Name: upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: Swin-B
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 50.31
|
|
mIoU(ms+flip): 51.9
|
|
Config: configs/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth
|
|
- Name: upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: Swin-B
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 82.64
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 8.52
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 48.35
|
|
mIoU(ms+flip): 49.65
|
|
Config: configs/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth
|
|
- Name: upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: Swin-B
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 50.76
|
|
mIoU(ms+flip): 52.4
|
|
Config: configs/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth
|
|
- Name: upernet_swin_large_patch4_window7_512x512_pretrain_224x224_22K_160k_ade20k
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: Swin-L
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 121.51
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 10.98
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 51.17
|
|
mIoU(ms+flip): 52.99
|
|
Config: configs/swin/upernet_swin_large_patch4_window7_512x512_pretrain_224x224_22K_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window7_512x512_pretrain_224x224_22K_160k_ade20k/upernet_swin_large_patch4_window7_512x512_pretrain_224x224_22K_160k_ade20k_20220318_015320-48d180dd.pth
|
|
- Name: upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: Swin-L
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 132.1
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 12.42
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 52.25
|
|
mIoU(ms+flip): 54.12
|
|
Config: configs/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth
|