100 lines
3.1 KiB
YAML
100 lines
3.1 KiB
YAML
Collections:
|
|
- Name: fp16
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
Paper:
|
|
URL: https://arxiv.org/abs/1710.03740
|
|
Title: Mixed Precision Training
|
|
README: configs/fp16/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmcv/blob/v1.3.14/mmcv/runner/hooks/optimizer.py#L134
|
|
Version: v1.3.14
|
|
Converted From:
|
|
Code: https://github.com/baidu-research/DeepBench
|
|
Models:
|
|
- Name: fcn_r101-d8_512x1024_80k_fp16_cityscapes
|
|
In Collection: fp16
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 115.74
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
memory (GB): 5.37
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.8
|
|
Config: configs/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes/fcn_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230921-50245227.pth
|
|
- Name: pspnet_r101-d8_512x1024_80k_fp16_cityscapes
|
|
In Collection: fp16
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 114.03
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
memory (GB): 5.34
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.46
|
|
Config: configs/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes/pspnet_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230919-ade37931.pth
|
|
- Name: deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes
|
|
In Collection: fp16
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 259.07
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
memory (GB): 5.75
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.48
|
|
Config: configs/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920-bc86dc84.pth
|
|
- Name: deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes
|
|
In Collection: fp16
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 127.06
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
memory (GB): 6.35
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.46
|
|
Config: configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920-cc58bc8d.pth
|