Peng Lu 788b37f78f
[Feature] Support NYU depth estimation dataset (#3269)
Thanks for your contribution and we appreciate it a lot. The following
instructions would make your pull request more healthy and more easily
get feedback. If you do not understand some items, don't worry, just
make the pull request and seek help from maintainers.

## Motivation

Please describe the motivation of this PR and the goal you want to
achieve through this PR.

## Modification

Please briefly describe what modification is made in this PR.
1. add `NYUDataset`class
2. add script to process NYU dataset
3. add transforms for loading depth map
4. add docs & unittest

## BC-breaking (Optional)

Does the modification introduce changes that break the
backward-compatibility of the downstream repos?
If so, please describe how it breaks the compatibility and how the
downstream projects should modify their code to keep compatibility with
this PR.

## Use cases (Optional)

If this PR introduces a new feature, it is better to list some use cases
here, and update the documentation.

## Checklist

1. Pre-commit or other linting tools are used to fix the potential lint
issues.
5. The modification is covered by complete unit tests. If not, please
add more unit test to ensure the correctness.
6. If the modification has potential influence on downstream projects,
this PR should be tested with downstream projects, like MMDet or
MMDet3D.
7. The documentation has been modified accordingly, like docstring or
example tutorials.
2023-08-17 11:39:44 +08:00

296 lines
11 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os.path as osp
import tempfile
import mmcv
import numpy as np
from mmcv.transforms import LoadImageFromFile
from mmseg.datasets.transforms import LoadAnnotations # noqa
from mmseg.datasets.transforms import (LoadBiomedicalAnnotation,
LoadBiomedicalData,
LoadBiomedicalImageFromFile,
LoadDepthAnnotation,
LoadImageFromNDArray)
class TestLoading:
@classmethod
def setup_class(cls):
cls.data_prefix = osp.join(osp.dirname(__file__), '../data')
def test_load_img(self):
results = dict(img_path=osp.join(self.data_prefix, 'color.jpg'))
transform = LoadImageFromFile()
results = transform(copy.deepcopy(results))
assert results['img_path'] == osp.join(self.data_prefix, 'color.jpg')
assert results['img'].shape == (288, 512, 3)
assert results['img'].dtype == np.uint8
assert results['ori_shape'] == results['img'].shape[:2]
assert repr(transform) == transform.__class__.__name__ + \
"(ignore_empty=False, to_float32=False, color_type='color'," + \
" imdecode_backend='cv2', backend_args=None)"
# to_float32
transform = LoadImageFromFile(to_float32=True)
results = transform(copy.deepcopy(results))
assert results['img'].dtype == np.float32
# gray image
results = dict(img_path=osp.join(self.data_prefix, 'gray.jpg'))
transform = LoadImageFromFile()
results = transform(copy.deepcopy(results))
assert results['img'].shape == (288, 512, 3)
assert results['img'].dtype == np.uint8
transform = LoadImageFromFile(color_type='unchanged')
results = transform(copy.deepcopy(results))
assert results['img'].shape == (288, 512)
assert results['img'].dtype == np.uint8
def test_load_seg(self):
seg_path = osp.join(self.data_prefix, 'seg.png')
results = dict(
seg_map_path=seg_path, reduce_zero_label=True, seg_fields=[])
transform = LoadAnnotations()
results = transform(copy.deepcopy(results))
assert results['gt_seg_map'].shape == (288, 512)
assert results['gt_seg_map'].dtype == np.uint8
assert repr(transform) == transform.__class__.__name__ + \
"(reduce_zero_label=True, imdecode_backend='pillow', " + \
'backend_args=None)'
# reduce_zero_label
transform = LoadAnnotations(reduce_zero_label=True)
results = transform(copy.deepcopy(results))
assert results['gt_seg_map'].shape == (288, 512)
assert results['gt_seg_map'].dtype == np.uint8
def test_load_seg_custom_classes(self):
test_img = np.random.rand(10, 10)
test_gt = np.zeros_like(test_img)
test_gt[2:4, 2:4] = 1
test_gt[2:4, 6:8] = 2
test_gt[6:8, 2:4] = 3
test_gt[6:8, 6:8] = 4
tmp_dir = tempfile.TemporaryDirectory()
img_path = osp.join(tmp_dir.name, 'img.jpg')
gt_path = osp.join(tmp_dir.name, 'gt.png')
mmcv.imwrite(test_img, img_path)
mmcv.imwrite(test_gt, gt_path)
# test only train with label with id 3
results = dict(
img_path=img_path,
seg_map_path=gt_path,
label_map={
0: 0,
1: 0,
2: 0,
3: 1,
4: 0
},
reduce_zero_label=False,
seg_fields=[])
load_imgs = LoadImageFromFile()
results = load_imgs(copy.deepcopy(results))
load_anns = LoadAnnotations()
results = load_anns(copy.deepcopy(results))
gt_array = results['gt_seg_map']
true_mask = np.zeros_like(gt_array)
true_mask[6:8, 2:4] = 1
assert results['seg_fields'] == ['gt_seg_map']
assert gt_array.shape == (10, 10)
assert gt_array.dtype == np.uint8
np.testing.assert_array_equal(gt_array, true_mask)
# test only train with label with id 4 and 3
results = dict(
img_path=osp.join(self.data_prefix, 'color.jpg'),
seg_map_path=gt_path,
label_map={
0: 0,
1: 0,
2: 0,
3: 2,
4: 1
},
reduce_zero_label=False,
seg_fields=[])
load_imgs = LoadImageFromFile()
results = load_imgs(copy.deepcopy(results))
load_anns = LoadAnnotations()
results = load_anns(copy.deepcopy(results))
gt_array = results['gt_seg_map']
true_mask = np.zeros_like(gt_array)
true_mask[6:8, 2:4] = 2
true_mask[6:8, 6:8] = 1
assert results['seg_fields'] == ['gt_seg_map']
assert gt_array.shape == (10, 10)
assert gt_array.dtype == np.uint8
np.testing.assert_array_equal(gt_array, true_mask)
# test with removing a class and reducing zero label simultaneously
results = dict(
img_path=img_path,
seg_map_path=gt_path,
# since reduce_zero_label is True, there are only 4 real classes.
# if the full set of classes is ["A", "B", "C", "D"], the
# following label map simulates the dataset option
# classes=["A", "C", "D"] which removes class "B".
label_map={
0: 0,
1: 255, # simulate removing class 1
2: 1,
3: 2
},
reduce_zero_label=True, # reduce zero label
seg_fields=[])
load_imgs = LoadImageFromFile()
results = load_imgs(copy.deepcopy(results))
# reduce zero label
load_anns = LoadAnnotations()
results = load_anns(copy.deepcopy(results))
gt_array = results['gt_seg_map']
true_mask = np.ones_like(gt_array) * 255 # all zeros get mapped to 255
true_mask[2:4, 2:4] = 0 # 1s are reduced to class 0 mapped to class 0
true_mask[2:4, 6:8] = 255 # 2s are reduced to class 1 which is removed
true_mask[6:8, 2:4] = 1 # 3s are reduced to class 2 mapped to class 1
true_mask[6:8, 6:8] = 2 # 4s are reduced to class 3 mapped to class 2
assert results['seg_fields'] == ['gt_seg_map']
assert gt_array.shape == (10, 10)
assert gt_array.dtype == np.uint8
np.testing.assert_array_equal(gt_array, true_mask)
# test no custom classes
results = dict(
img_path=img_path,
seg_map_path=gt_path,
reduce_zero_label=False,
seg_fields=[])
load_imgs = LoadImageFromFile()
results = load_imgs(copy.deepcopy(results))
load_anns = LoadAnnotations()
results = load_anns(copy.deepcopy(results))
gt_array = results['gt_seg_map']
assert results['seg_fields'] == ['gt_seg_map']
assert gt_array.shape == (10, 10)
assert gt_array.dtype == np.uint8
np.testing.assert_array_equal(gt_array, test_gt)
tmp_dir.cleanup()
def test_load_image_from_ndarray(self):
results = {'img': np.zeros((256, 256, 3), dtype=np.uint8)}
transform = LoadImageFromNDArray()
results = transform(results)
assert results['img'].shape == (256, 256, 3)
assert results['img'].dtype == np.uint8
assert results['img_shape'] == (256, 256)
assert results['ori_shape'] == (256, 256)
# to_float32
transform = LoadImageFromNDArray(to_float32=True)
results = transform(copy.deepcopy(results))
assert results['img'].dtype == np.float32
# test repr
transform = LoadImageFromNDArray()
assert repr(transform) == ('LoadImageFromNDArray('
'ignore_empty=False, '
'to_float32=False, '
"color_type='color', "
"imdecode_backend='cv2', "
'backend_args=None)')
def test_load_biomedical_img(self):
results = dict(
img_path=osp.join(self.data_prefix, 'biomedical.nii.gz'))
transform = LoadBiomedicalImageFromFile()
results = transform(copy.deepcopy(results))
assert results['img_path'] == osp.join(self.data_prefix,
'biomedical.nii.gz')
assert len(results['img'].shape) == 4
assert results['img'].dtype == np.float32
assert results['ori_shape'] == results['img'].shape[1:]
assert repr(transform) == ('LoadBiomedicalImageFromFile('
"decode_backend='nifti', "
'to_xyz=False, '
'to_float32=True, '
'backend_args=None)')
def test_load_biomedical_annotation(self):
results = dict(
seg_map_path=osp.join(self.data_prefix, 'biomedical_ann.nii.gz'))
transform = LoadBiomedicalAnnotation()
results = transform(copy.deepcopy(results))
assert len(results['gt_seg_map'].shape) == 3
assert results['gt_seg_map'].dtype == np.float32
def test_load_biomedical_data(self):
input_results = dict(
img_path=osp.join(self.data_prefix, 'biomedical.npy'))
transform = LoadBiomedicalData(with_seg=True)
results = transform(copy.deepcopy(input_results))
assert results['img_path'] == osp.join(self.data_prefix,
'biomedical.npy')
assert results['img'][0].shape == results['gt_seg_map'].shape
assert results['img'].dtype == np.float32
assert results['ori_shape'] == results['img'].shape[1:]
assert repr(transform) == ('LoadBiomedicalData('
'with_seg=True, '
"decode_backend='numpy', "
'to_xyz=False, '
'backend_args=None)')
transform = LoadBiomedicalData(with_seg=False)
results = transform(copy.deepcopy(input_results))
assert len(results['img'].shape) == 4
assert results.get('gt_seg_map') is None
assert repr(transform) == ('LoadBiomedicalData('
'with_seg=False, '
"decode_backend='numpy', "
'to_xyz=False, '
'backend_args=None)')
def test_load_depth_annotation(self):
input_results = dict(
img_path='tests/data/pseudo_nyu_dataset/images/'
'bookstore_0001d_00001.jpg',
depth_map_path='tests/data/pseudo_nyu_dataset/'
'annotations/bookstore_0001d_00001.png',
category_id=-1,
seg_fields=[])
transform = LoadDepthAnnotation(depth_rescale_factor=0.001)
results = transform(input_results)
assert 'gt_depth_map' in results
assert results['gt_depth_map'].shape[:2] == mmcv.imread(
input_results['depth_map_path']).shape[:2]
assert results['gt_depth_map'].dtype == np.float32
assert 'gt_depth_map' in results['seg_fields']