297 lines
12 KiB
YAML
297 lines
12 KiB
YAML
Collections:
|
|
- Name: EncNet
|
|
License: Apache License 2.0
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- ADE20K
|
|
Paper:
|
|
Title: Context Encoding for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1803.08904
|
|
README: configs/encnet/README.md
|
|
Frameworks:
|
|
- PyTorch
|
|
Models:
|
|
- Name: encnet_r50-d8_4xb2-40k_cityscapes-512x1024
|
|
In Collection: EncNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 75.67
|
|
mIoU(ms+flip): 77.08
|
|
Config: configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-512x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-50-D8
|
|
- EncNet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 8.6
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes_20200621_220958-68638a47.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes-20200621_220958.log.json
|
|
Paper:
|
|
Title: Context Encoding for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1803.08904
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
|
|
Framework: PyTorch
|
|
- Name: encnet_r101-d8_4xb2-40k_cityscapes-512x1024
|
|
In Collection: EncNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 75.81
|
|
mIoU(ms+flip): 77.21
|
|
Config: configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-512x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-101-D8
|
|
- EncNet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 12.1
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes_20200621_220933-35e0a3e8.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes-20200621_220933.log.json
|
|
Paper:
|
|
Title: Context Encoding for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1803.08904
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
|
|
Framework: PyTorch
|
|
- Name: encnet_r50-d8_4xb2-40k_cityscapes-769x769
|
|
In Collection: EncNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.24
|
|
mIoU(ms+flip): 77.85
|
|
Config: configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-769x769.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-50-D8
|
|
- EncNet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 9.8
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes_20200621_220958-3bcd2884.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes-20200621_220958.log.json
|
|
Paper:
|
|
Title: Context Encoding for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1803.08904
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
|
|
Framework: PyTorch
|
|
- Name: encnet_r101-d8_4xb2-40k_cityscapes-769x769
|
|
In Collection: EncNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 74.25
|
|
mIoU(ms+flip): 76.25
|
|
Config: configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-769x769.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-101-D8
|
|
- EncNet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 13.7
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes_20200621_220933-2fafed55.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes-20200621_220933.log.json
|
|
Paper:
|
|
Title: Context Encoding for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1803.08904
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
|
|
Framework: PyTorch
|
|
- Name: encnet_r50-d8_4xb2-80k_cityscapes-512x1024
|
|
In Collection: EncNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.94
|
|
mIoU(ms+flip): 79.13
|
|
Config: configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-512x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-50-D8
|
|
- EncNet
|
|
Training Resources: 4x V100 GPUS
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes_20200622_003554-fc5c5624.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes-20200622_003554.log.json
|
|
Paper:
|
|
Title: Context Encoding for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1803.08904
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
|
|
Framework: PyTorch
|
|
- Name: encnet_r101-d8_4xb2-80k_cityscapes-512x1024
|
|
In Collection: EncNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.55
|
|
mIoU(ms+flip): 79.47
|
|
Config: configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-512x1024.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-101-D8
|
|
- EncNet
|
|
Training Resources: 4x V100 GPUS
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes_20200622_003555-1de64bec.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes-20200622_003555.log.json
|
|
Paper:
|
|
Title: Context Encoding for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1803.08904
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
|
|
Framework: PyTorch
|
|
- Name: encnet_r50-d8_4xb2-80k_cityscapes-769x769
|
|
In Collection: EncNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.44
|
|
mIoU(ms+flip): 78.72
|
|
Config: configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-769x769.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-50-D8
|
|
- EncNet
|
|
Training Resources: 4x V100 GPUS
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes_20200622_003554-55096dcb.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes-20200622_003554.log.json
|
|
Paper:
|
|
Title: Context Encoding for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1803.08904
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
|
|
Framework: PyTorch
|
|
- Name: encnet_r101-d8_4xb2-80k_cityscapes-769x769
|
|
In Collection: EncNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.1
|
|
mIoU(ms+flip): 76.97
|
|
Config: configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-769x769.py
|
|
Metadata:
|
|
Training Data: Cityscapes
|
|
Batch Size: 8
|
|
Architecture:
|
|
- R-101-D8
|
|
- EncNet
|
|
Training Resources: 4x V100 GPUS
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes_20200622_003555-470ef79d.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes-20200622_003555.log.json
|
|
Paper:
|
|
Title: Context Encoding for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1803.08904
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
|
|
Framework: PyTorch
|
|
- Name: encnet_r50-d8_4xb4-80k_ade20k-512x512
|
|
In Collection: EncNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 39.53
|
|
mIoU(ms+flip): 41.17
|
|
Config: configs/encnet/encnet_r50-d8_4xb4-80k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-50-D8
|
|
- EncNet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 10.1
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k_20200622_042412-44b46b04.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k-20200622_042412.log.json
|
|
Paper:
|
|
Title: Context Encoding for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1803.08904
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
|
|
Framework: PyTorch
|
|
- Name: encnet_r101-d8_4xb4-80k_ade20k-512x512
|
|
In Collection: EncNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.11
|
|
mIoU(ms+flip): 43.61
|
|
Config: configs/encnet/encnet_r101-d8_4xb4-80k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-101-D8
|
|
- EncNet
|
|
Training Resources: 4x V100 GPUS
|
|
Memory (GB): 13.6
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k_20200622_101128-dd35e237.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k-20200622_101128.log.json
|
|
Paper:
|
|
Title: Context Encoding for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1803.08904
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
|
|
Framework: PyTorch
|
|
- Name: encnet_r50-d8_4xb4-160k_ade20k-512x512
|
|
In Collection: EncNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 40.1
|
|
mIoU(ms+flip): 41.71
|
|
Config: configs/encnet/encnet_r50-d8_4xb4-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-50-D8
|
|
- EncNet
|
|
Training Resources: 4x V100 GPUS
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k_20200622_101059-b2db95e0.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k-20200622_101059.log.json
|
|
Paper:
|
|
Title: Context Encoding for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1803.08904
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
|
|
Framework: PyTorch
|
|
- Name: encnet_r101-d8_4xb4-160k_ade20k-512x512
|
|
In Collection: EncNet
|
|
Results:
|
|
Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.61
|
|
mIoU(ms+flip): 44.01
|
|
Config: configs/encnet/encnet_r101-d8_4xb4-160k_ade20k-512x512.py
|
|
Metadata:
|
|
Training Data: ADE20K
|
|
Batch Size: 16
|
|
Architecture:
|
|
- R-101-D8
|
|
- EncNet
|
|
Training Resources: 4x V100 GPUS
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k_20200622_073348-7989641f.pth
|
|
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k-20200622_073348.log.json
|
|
Paper:
|
|
Title: Context Encoding for Semantic Segmentation
|
|
URL: https://arxiv.org/abs/1803.08904
|
|
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
|
|
Framework: PyTorch
|