|
||
---|---|---|
.. | ||
configs | ||
datasets | ||
tools | ||
README.md |
README.md
Vessel Assessment and Measurement Platform for Images of the REtina
Description
This project support Vessel Assessment and Measurement Platform for Images of the REtina
, and the dataset used in this project can be downloaded from here.
Dataset Overview
In order to promote evaluation of vessel segmentation on ultra-wide field-of-view (UWFV) fluorescein angriogram (FA) frames, we make public 8 frames from two different sequences, the manually annotated images and the result of our automatic vessel segmentation algorithm.
Original Statistic Information
Dataset name | Anatomical region | Task type | Modality | Num. Classes | Train/Val/Test Images | Train/Val/Test Labeled | Release Date | License |
---|---|---|---|---|---|---|---|---|
Vampire | vessel | segmentation | fluorescein angriogram | 2 | 8/-/- | yes/-/- | 2017 | CC-BY-NC 4.0 |
Class Name | Num. Train | Pct. Train | Num. Val | Pct. Val | Num. Test | Pct. Test |
---|---|---|---|---|---|---|
background | 8 | 96.75 | - | - | - | - |
vessel | 8 | 3.25 | - | - | - | - |
Note:
Pct
means percentage of pixels in this category in all pixels.
Visualization
Dataset Citation
@inproceedings{perez2011improving,
title={Improving vessel segmentation in ultra-wide field-of-view retinal fluorescein angiograms},
author={Perez-Rovira, Adria and Zutis, K and Hubschman, Jean Pierre and Trucco, Emanuele},
booktitle={2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society},
pages={2614--2617},
year={2011},
organization={IEEE}
}
@article{perez2011rerbee,
title={RERBEE: robust efficient registration via bifurcations and elongated elements applied to retinal fluorescein angiogram sequences},
author={Perez-Rovira, Adria and Cabido, Raul and Trucco, Emanuele and McKenna, Stephen J and Hubschman, Jean Pierre},
journal={IEEE Transactions on Medical Imaging},
volume={31},
number={1},
pages={140--150},
year={2011},
publisher={IEEE}
}
Prerequisites
- Python v3.8
- PyTorch v1.10.0
- pillow(PIL) v9.3.0
- scikit-learn(sklearn) v1.2.0
- MIM v0.3.4
- MMCV v2.0.0rc4
- MMEngine v0.2.0 or higher
- MMSegmentation v1.0.0rc5
All the commands below rely on the correct configuration of PYTHONPATH
, which should point to the project's directory so that Python can locate the module files. In vampire/
root directory, run the following line to add the current directory to PYTHONPATH
:
export PYTHONPATH=`pwd`:$PYTHONPATH
Dataset preparing
- download dataset from here and decompression data to path
'data/'
. - run script
"python tools/prepare_dataset.py"
to split dataset and change folder structure as below. - run script
python ../../tools/split_seg_dataset.py
to split dataset. For the Bacteria_detection dataset, as there is no test or validation dataset, we sample 20% samples from the whole dataset as the validation dataset and 80% samples for training data and make two filename liststrain.txt
andval.txt
. As we set the random seed as the hard code, we eliminated the randomness, the dataset split actually can be reproducible.
mmsegmentation
├── mmseg
├── projects
│ ├── medical
│ │ ├── 2d_image
│ │ │ ├── fluorescein_angriogram
│ │ │ │ ├── vampire
│ │ │ │ │ ├── configs
│ │ │ │ │ ├── datasets
│ │ │ │ │ ├── tools
│ │ │ │ │ ├── data
│ │ │ │ │ │ ├── train.txt
│ │ │ │ │ │ ├── val.txt
│ │ │ │ │ │ ├── images
│ │ │ │ │ │ │ ├── train
│ │ │ │ | │ │ │ ├── xxx.png
│ │ │ │ | │ │ │ ├── ...
│ │ │ │ | │ │ │ └── xxx.png
│ │ │ │ │ │ ├── masks
│ │ │ │ │ │ │ ├── train
│ │ │ │ | │ │ │ ├── xxx.png
│ │ │ │ | │ │ │ ├── ...
│ │ │ │ | │ │ │ └── xxx.png
Divided Dataset Information
Note: The table information below is divided by ourselves.
Class Name | Num. Train | Pct. Train | Num. Val | Pct. Val | Num. Test | Pct. Test |
---|---|---|---|---|---|---|
background | 6 | 97.48 | 2 | 94.54 | - | - |
vessel | 6 | 2.52 | 2 | 5.46 | - | - |
Training commands
To train models on a single server with one GPU. (default)
mim train mmseg ./configs/${CONFIG_PATH}
Testing commands
To test models on a single server with one GPU. (default)
mim test mmseg ./configs/${CONFIG_PATH} --checkpoint ${CHECKPOINT_PATH}
Checklist
-
Milestone 1: PR-ready, and acceptable to be one of the
projects/
.-
Finish the code
-
Basic docstrings & proper citation
-
Test-time correctness
-
A full README
-
-
Milestone 2: Indicates a successful model implementation.
- Training-time correctness
-
Milestone 3: Good to be a part of our core package!
-
Type hints and docstrings
-
Unit tests
-
Code polishing
-
Metafile.yml
-
-
Move your modules into the core package following the codebase's file hierarchy structure.
-
Refactor your modules into the core package following the codebase's file hierarchy structure.