mmsegmentation/configs/point_rend/point_rend.yml

96 lines
2.8 KiB
YAML

Collections:
- Metadata:
Training Data:
- Cityscapes
- ADE20K
Name: point_rend
Models:
- Config: configs/point_rend/pointrend_r50_512x1024_80k_cityscapes.py
In Collection: point_rend
Metadata:
backbone: R-50
crop size: (512,1024)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,1024)
value: 117.92
lr schd: 80000
memory (GB): 3.1
Name: pointrend_r50_512x1024_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 76.47
mIoU(ms+flip): 78.13
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x1024_80k_cityscapes/pointrend_r50_512x1024_80k_cityscapes_20200711_015821-bb1ff523.pth
- Config: configs/point_rend/pointrend_r101_512x1024_80k_cityscapes.py
In Collection: point_rend
Metadata:
backbone: R-101
crop size: (512,1024)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,1024)
value: 142.86
lr schd: 80000
memory (GB): 4.2
Name: pointrend_r101_512x1024_80k_cityscapes
Results:
Dataset: Cityscapes
Metrics:
mIoU: 78.3
mIoU(ms+flip): 79.97
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x1024_80k_cityscapes/pointrend_r101_512x1024_80k_cityscapes_20200711_170850-d0ca84be.pth
- Config: configs/point_rend/pointrend_r50_512x512_160k_ade20k.py
In Collection: point_rend
Metadata:
backbone: R-50
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 57.77
lr schd: 160000
memory (GB): 5.1
Name: pointrend_r50_512x512_160k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 37.64
mIoU(ms+flip): 39.17
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x512_160k_ade20k/pointrend_r50_512x512_160k_ade20k_20200807_232644-ac3febf2.pth
- Config: configs/point_rend/pointrend_r101_512x512_160k_ade20k.py
In Collection: point_rend
Metadata:
backbone: R-101
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 64.52
lr schd: 160000
memory (GB): 6.1
Name: pointrend_r101_512x512_160k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 40.02
mIoU(ms+flip): 41.6
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x512_160k_ade20k/pointrend_r101_512x512_160k_ade20k_20200808_030852-8834902a.pth