mmsegmentation/docs/zh_cn/device/npu.md

40 lines
4.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# NPU (华为 昇腾)
## 使用方法
请参考 [MMCV 的安装文档](https://mmcv.readthedocs.io/en/latest/get_started/build.html#build-mmcv-full-on-ascend-npu-machine) 来安装 NPU 版本的 MMCV。
以下展示单机四卡场景的运行指令:
```shell
bash tools/dist_train.sh configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py 4
```
以下展示单机单卡下的运行指令:
```shell
python tools/train.py configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py
```
## 模型验证结果
| Model | mIoU | Config | Download |
| :-----------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------ |
| [deeplabv3](<>) | 78.85 | [config](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024_20230115_205626.json) |
| [deeplabv3plus](<>) | 79.23 | [config](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024_20230116_043450.json) |
| [hrnet](<>) | 78.1 | [config](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/hrnet/fcn_hr18_4xb2-40k_cityscapes-512x1024.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/fcn_hr18_4xb2-40k_cityscapes-512x1024_20230116_215821.json) |
| [fcn](<>) | 74.15 | [config](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/fcn_r50-d8_4xb2-40k_cityscapes-512x1024_20230111_083014.json) |
| [icnet](<>) | 69.25 | [config](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/icnet/icnet_r50-d8_4xb2-80k_cityscapes-832x832.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/icnet_r50-d8_4xb2-80k_cityscapes-832x832_20230119_002929.json) |
| [pspnet](<>) | 77.21 | [config](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024_20230114_042721.json) |
| [unet](<>) | 68.86 | [config](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/unet/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/unet-s5-d16_fcn_4xb4-160k_cityscapes-512x1024_20230129_224750.json) |
| [upernet](<>) | 77.81 | [config](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/upernet/upernet_r50_4xb2-40k_cityscapes-512x1024.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/upernet_r50_4xb2-40k_cityscapes-512x1024_20230129_014634.json) |
| [apcnet](<>) | 78.02 | [config](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/apcnet/apcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/apcnet_r50-d8_4xb2-40k_cityscapes-512x1024_20230209_212545.json) |
| [bisenetv1](<>) | 76.04 | [config](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/bisenetv1/bisenetv1_r50-d32_4xb4-160k_cityscapes-1024x1024.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/bisenetv1_r50-d32_4xb4-160k_cityscapes-1024x1024_20230201_023946.json) |
| [bisenetv2](<>) | 72.44 | [config](https://github.com/open-mmlab/mmsegmentation/tree/1.x/configs/bisenetv2/bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024.py) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/device/npu/bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024_20230205_215606.json) |
**注意:**
- 如果没有特别标记NPU 上的使用混合精度训练的结果与使用 FP32 的 GPU 上的结果相同。
**以上模型结果由华为昇腾团队提供**