* Modify default work dir when training. * Refactor gather_models.py. * Add train and test matching list. * Regression benchmark list. * lower readme name to upper readme name. * Add url check tool and model inference test tool. * Modify tool name. * Support duplicate mode of log json url check. * Add regression benchmark evaluation automatic tool. * Add train script generator. * Only Support script running. * Add evaluation results gather. * Add exec Authority. * Automatically make checkpoint root folder. * Modify gather results save path. * Coarse-grained train results gather tool. * Complete benchmark train script. * Make some little modifications. * Fix checkpoint urls. * Fix unet checkpoint urls. * Fix fast scnn & fcn checkpoint url. * Fix fast scnn checkpoint urls. * Fix fast scnn url. * Add differential results calculation. * Add differential results of regression benchmark train results. * Add an extra argument to select model. * Update nonlocal_net & hrnet checkpoint url. * Fix checkpoint url of hrnet and Fix some tta evaluation results and modify gather models tool. * Modify fast scnn checkpoint url. * Resolve new comments. * Fix url check status code bug. * Resolve some comments. * Modify train scripts generator. * Modify work_dir of regression benchmark results. * model gather tool modification. |
||
---|---|---|
.. | ||
README.md | ||
deeplabv3_unet_s5-d16_64x64_40k_drive.py | ||
deeplabv3_unet_s5-d16_128x128_40k_chase_db1.py | ||
deeplabv3_unet_s5-d16_128x128_40k_stare.py | ||
deeplabv3_unet_s5-d16_256x256_40k_hrf.py | ||
fcn_unet_s5-d16_64x64_40k_drive.py | ||
fcn_unet_s5-d16_128x128_40k_chase_db1.py | ||
fcn_unet_s5-d16_128x128_40k_stare.py | ||
fcn_unet_s5-d16_256x256_40k_hrf.py | ||
pspnet_unet_s5-d16_64x64_40k_drive.py | ||
pspnet_unet_s5-d16_128x128_40k_chase_db1.py | ||
pspnet_unet_s5-d16_128x128_40k_stare.py | ||
pspnet_unet_s5-d16_256x256_40k_hrf.py | ||
unet.yml |
README.md
U-Net: Convolutional Networks for Biomedical Image Segmentation
Introduction
@inproceedings{ronneberger2015u,
title={U-net: Convolutional networks for biomedical image segmentation},
author={Ronneberger, Olaf and Fischer, Philipp and Brox, Thomas},
booktitle={International Conference on Medical image computing and computer-assisted intervention},
pages={234--241},
year={2015},
organization={Springer}
}
Results and models
DRIVE
Method | Backbone | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Dice | config | download |
---|---|---|---|---|---|---|---|---|---|---|
FCN | UNet-S5-D16 | 584x565 | 64x64 | 42x42 | 40000 | 0.680 | - | 78.67 | config | model | log |
PSPNet | UNet-S5-D16 | 584x565 | 64x64 | 42x42 | 40000 | 0.599 | - | 78.62 | config | model | log |
DeepLabV3 | UNet-S5-D16 | 584x565 | 64x64 | 42x42 | 40000 | 0.596 | - | 78.69 | config | model | log |
STARE
Method | Backbone | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Dice | config | download |
---|---|---|---|---|---|---|---|---|---|---|
FCN | UNet-S5-D16 | 605x700 | 128x128 | 85x85 | 40000 | 0.968 | - | 81.02 | config | model | log |
PSPNet | UNet-S5-D16 | 605x700 | 128x128 | 85x85 | 40000 | 0.982 | - | 81.22 | config | model | log |
DeepLabV3 | UNet-S5-D16 | 605x700 | 128x128 | 85x85 | 40000 | 0.999 | - | 80.93 | config | model | log |
CHASE_DB1
Method | Backbone | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Dice | config | download |
---|---|---|---|---|---|---|---|---|---|---|
FCN | UNet-S5-D16 | 960x999 | 128x128 | 85x85 | 40000 | 0.968 | - | 80.24 | config | model | log |
PSPNet | UNet-S5-D16 | 960x999 | 128x128 | 85x85 | 40000 | 0.982 | - | 80.36 | config | model | log |
DeepLabV3 | UNet-S5-D16 | 960x999 | 128x128 | 85x85 | 40000 | 0.999 | - | 80.47 | config | model | log |
HRF
Method | Backbone | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Dice | config | download |
---|---|---|---|---|---|---|---|---|---|---|
FCN | UNet-S5-D16 | 2336x3504 | 256x256 | 170x170 | 40000 | 2.525 | - | 79.45 | config | model | log |
PSPNet | UNet-S5-D16 | 2336x3504 | 256x256 | 170x170 | 40000 | 2.588 | - | 80.07 | config | model | log |
DeepLabV3 | UNet-S5-D16 | 2336x3504 | 256x256 | 170x170 | 40000 | 2.604 | - | 80.21 | config | model | log |