mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
187 lines
6.4 KiB
YAML
187 lines
6.4 KiB
YAML
Collections:
|
|
- Name: unet
|
|
Metadata:
|
|
Training Data:
|
|
- DRIVE
|
|
- STARE
|
|
- CHASE_DB1
|
|
- HRF
|
|
Paper:
|
|
URL: https://arxiv.org/abs/1505.04597
|
|
Title: 'U-Net: Convolutional Networks for Biomedical Image Segmentation'
|
|
README: configs/unet/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/unet.py#L225
|
|
Version: v0.17.0
|
|
Converted From:
|
|
Code: http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net
|
|
Models:
|
|
- Name: fcn_unet_s5-d16_64x64_40k_drive
|
|
In Collection: unet
|
|
Metadata:
|
|
backbone: UNet-S5-D16
|
|
crop size: (64,64)
|
|
lr schd: 40000
|
|
Training Memory (GB): 0.68
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: DRIVE
|
|
Metrics:
|
|
Dice: 78.67
|
|
Config: configs/unet/fcn_unet_s5-d16_64x64_40k_drive.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth
|
|
- Name: pspnet_unet_s5-d16_64x64_40k_drive
|
|
In Collection: unet
|
|
Metadata:
|
|
backbone: UNet-S5-D16
|
|
crop size: (64,64)
|
|
lr schd: 40000
|
|
Training Memory (GB): 0.599
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: DRIVE
|
|
Metrics:
|
|
Dice: 78.62
|
|
Config: configs/unet/pspnet_unet_s5-d16_64x64_40k_drive.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth
|
|
- Name: deeplabv3_unet_s5-d16_64x64_40k_drive
|
|
In Collection: unet
|
|
Metadata:
|
|
backbone: UNet-S5-D16
|
|
crop size: (64,64)
|
|
lr schd: 40000
|
|
Training Memory (GB): 0.596
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: DRIVE
|
|
Metrics:
|
|
Dice: 78.69
|
|
Config: configs/unet/deeplabv3_unet_s5-d16_64x64_40k_drive.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth
|
|
- Name: fcn_unet_s5-d16_128x128_40k_stare
|
|
In Collection: unet
|
|
Metadata:
|
|
backbone: UNet-S5-D16
|
|
crop size: (128,128)
|
|
lr schd: 40000
|
|
Training Memory (GB): 0.968
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: STARE
|
|
Metrics:
|
|
Dice: 81.02
|
|
Config: configs/unet/fcn_unet_s5-d16_128x128_40k_stare.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth
|
|
- Name: pspnet_unet_s5-d16_128x128_40k_stare
|
|
In Collection: unet
|
|
Metadata:
|
|
backbone: UNet-S5-D16
|
|
crop size: (128,128)
|
|
lr schd: 40000
|
|
Training Memory (GB): 0.982
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: STARE
|
|
Metrics:
|
|
Dice: 81.22
|
|
Config: configs/unet/pspnet_unet_s5-d16_128x128_40k_stare.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth
|
|
- Name: deeplabv3_unet_s5-d16_128x128_40k_stare
|
|
In Collection: unet
|
|
Metadata:
|
|
backbone: UNet-S5-D16
|
|
crop size: (128,128)
|
|
lr schd: 40000
|
|
Training Memory (GB): 0.999
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: STARE
|
|
Metrics:
|
|
Dice: 80.93
|
|
Config: configs/unet/deeplabv3_unet_s5-d16_128x128_40k_stare.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth
|
|
- Name: fcn_unet_s5-d16_128x128_40k_chase_db1
|
|
In Collection: unet
|
|
Metadata:
|
|
backbone: UNet-S5-D16
|
|
crop size: (128,128)
|
|
lr schd: 40000
|
|
Training Memory (GB): 0.968
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: CHASE_DB1
|
|
Metrics:
|
|
Dice: 80.24
|
|
Config: configs/unet/fcn_unet_s5-d16_128x128_40k_chase_db1.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth
|
|
- Name: pspnet_unet_s5-d16_128x128_40k_chase_db1
|
|
In Collection: unet
|
|
Metadata:
|
|
backbone: UNet-S5-D16
|
|
crop size: (128,128)
|
|
lr schd: 40000
|
|
Training Memory (GB): 0.982
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: CHASE_DB1
|
|
Metrics:
|
|
Dice: 80.36
|
|
Config: configs/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth
|
|
- Name: deeplabv3_unet_s5-d16_128x128_40k_chase_db1
|
|
In Collection: unet
|
|
Metadata:
|
|
backbone: UNet-S5-D16
|
|
crop size: (128,128)
|
|
lr schd: 40000
|
|
Training Memory (GB): 0.999
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: CHASE_DB1
|
|
Metrics:
|
|
Dice: 80.47
|
|
Config: configs/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth
|
|
- Name: fcn_unet_s5-d16_256x256_40k_hrf
|
|
In Collection: unet
|
|
Metadata:
|
|
backbone: UNet-S5-D16
|
|
crop size: (256,256)
|
|
lr schd: 40000
|
|
Training Memory (GB): 2.525
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: HRF
|
|
Metrics:
|
|
Dice: 79.45
|
|
Config: configs/unet/fcn_unet_s5-d16_256x256_40k_hrf.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth
|
|
- Name: pspnet_unet_s5-d16_256x256_40k_hrf
|
|
In Collection: unet
|
|
Metadata:
|
|
backbone: UNet-S5-D16
|
|
crop size: (256,256)
|
|
lr schd: 40000
|
|
Training Memory (GB): 2.588
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: HRF
|
|
Metrics:
|
|
Dice: 80.07
|
|
Config: configs/unet/pspnet_unet_s5-d16_256x256_40k_hrf.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth
|
|
- Name: deeplabv3_unet_s5-d16_256x256_40k_hrf
|
|
In Collection: unet
|
|
Metadata:
|
|
backbone: UNet-S5-D16
|
|
crop size: (256,256)
|
|
lr schd: 40000
|
|
Training Memory (GB): 2.604
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: HRF
|
|
Metrics:
|
|
Dice: 80.21
|
|
Config: configs/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth
|