DerrickWang005 62f70ebedd
support coco stuff-10k/164k (#625)
* support coco stuff-10k/164k

* update docs

* fix docs

* update docs

* fix import lints

* Update docs/dataset_prepare.md

* Update docs/dataset_prepare.md

* Update tools/convert_datasets/coco_stuff164k.py

* Update tools/convert_datasets/coco_stuff10k.py

* Update tools/convert_datasets/coco_stuff10k.py

* Update tools/convert_datasets/coco_stuff10k.py

* Update tools/convert_datasets/coco_stuff10k.py

* Update coco_stuff.py

fix the description of the dataset

* Update dataset_prepare.md

fix the doc tree of coco stuff 10k

* Update coco_stuff10k.py

fix img_dir

* Update coco_stuff.py

fix descriptions

* Update coco_stuff164k.py

fix out_dir

* Update coco_stuff10k.py

fix save file name

* Update coco_stuff.py

fix seg_map_suffix

* Update dataset_prepare.md

fix -p

* Update dataset_prepare.md

fix doc tree

* modify coco stuff convertor

* Remove redundant code

* fix 164k convert bug

* remove redundant comment

* add deeplabv3 configs and more iterations

* replace shutil.move with shtil.copyfile

* Update deeplabv3_r50-d8_512x512_4x4_80k_coco_stuff10k.py

fix wrong config

* Update deeplabv3_r101-d8_512x512_4x4_80k_coco_stuff164k.py

fix wrong config

* fix wrong configs

* fix wrong configs

* fix wrong path for coco stuff 10k

* fix convert bugs

* fix seg_filename bug

* when nproc=0, use track progress

* rename configs: coco_stuff --> coco-stuff

* add coco-stuff 10k and 164k to README.md

* update configs

* add deeplabv3 benchmark

* add pspnet benchmark

* remove redundant comma

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-09-22 20:48:08 +08:00

55 lines
1.8 KiB
Python

# dataset settings
dataset_type = 'COCOStuffDataset'
data_root = 'data/coco_stuff164k'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 512)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 512),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_root=data_root,
img_dir='images/train2017',
ann_dir='annotations/train2017',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_root=data_root,
img_dir='images/val2017',
ann_dir='annotations/val2017',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
data_root=data_root,
img_dir='images/val2017',
ann_dir='annotations/val2017',
pipeline=test_pipeline))