* Modify default work dir when training. * Refactor gather_models.py. * Add train and test matching list. * Regression benchmark list. * lower readme name to upper readme name. * Add url check tool and model inference test tool. * Modify tool name. * Support duplicate mode of log json url check. * Add regression benchmark evaluation automatic tool. * Add train script generator. * Only Support script running. * Add evaluation results gather. * Add exec Authority. * Automatically make checkpoint root folder. * Modify gather results save path. * Coarse-grained train results gather tool. * Complete benchmark train script. * Make some little modifications. * Fix checkpoint urls. * Fix unet checkpoint urls. * Fix fast scnn & fcn checkpoint url. * Fix fast scnn checkpoint urls. * Fix fast scnn url. * Add differential results calculation. * Add differential results of regression benchmark train results. * Add an extra argument to select model. * Update nonlocal_net & hrnet checkpoint url. * Fix checkpoint url of hrnet and Fix some tta evaluation results and modify gather models tool. * Modify fast scnn checkpoint url. * Resolve new comments. * Fix url check status code bug. * Resolve some comments. * Modify train scripts generator. * Modify work_dir of regression benchmark results. * model gather tool modification.
Documentation: https://mmsegmentation.readthedocs.io/
English | 简体中文
Introduction
MMSegmentation is an open source semantic segmentation toolbox based on PyTorch. It is a part of the OpenMMLab project.
The master branch works with PyTorch 1.3+.
Major features
-
Unified Benchmark
We provide a unified benchmark toolbox for various semantic segmentation methods.
-
Modular Design
We decompose the semantic segmentation framework into different components and one can easily construct a customized semantic segmentation framework by combining different modules.
-
Support of multiple methods out of box
The toolbox directly supports popular and contemporary semantic segmentation frameworks, e.g. PSPNet, DeepLabV3, PSANet, DeepLabV3+, etc.
-
High efficiency
The training speed is faster than or comparable to other codebases.
License
This project is released under the Apache 2.0 license.
Changelog
v0.17.0 was released in 09/01/2021. Please refer to changelog.md for details and release history.
Benchmark and model zoo
Results and models are available in the model zoo.
Supported backbones:
- ResNet (CVPR'2016)
- ResNeXt (CVPR'2017)
- HRNet (CVPR'2019)
- ResNeSt (ArXiv'2020)
- MobileNetV2 (CVPR'2018)
- MobileNetV3 (ICCV'2019)
- Vision Transformer (ICLR'2021)
- Swin Transformer (ArXiv'2021)
Supported methods:
- FCN (CVPR'2015/TPAMI'2017)
- UNet (MICCAI'2016/Nat. Methods'2019)
- PSPNet (CVPR'2017)
- DeepLabV3 (ArXiv'2017)
- Mixed Precision (FP16) Training (ArXiv'2017)
- PSANet (ECCV'2018)
- DeepLabV3+ (CVPR'2018)
- UPerNet (ECCV'2018)
- NonLocal Net (CVPR'2018)
- EncNet (CVPR'2018)
- Semantic FPN (CVPR'2019)
- DANet (CVPR'2019)
- APCNet (CVPR'2019)
- EMANet (ICCV'2019)
- CCNet (ICCV'2019)
- DMNet (ICCV'2019)
- ANN (ICCV'2019)
- GCNet (ICCVW'2019/TPAMI'2020)
- Fast-SCNN (ArXiv'2019)
- OCRNet (ECCV'2020)
- DNLNet (ECCV'2020)
- PointRend (CVPR'2020)
- CGNet (TIP'2020)
- SETR (CVPR'2021)
- SegFormer (ArXiv'2021)
Supported datasets:
Installation
Please refer to get_started.md for installation and dataset_prepare.md for dataset preparation.
Get Started
Please see train.md and inference.md for the basic usage of MMSegmentation. There are also tutorials for customizing dataset, designing data pipeline, customizing modules, and customizing runtime. We also provide many training tricks for better training and usefule tools for deployment.
A Colab tutorial is also provided. You may preview the notebook here or directly run on Colab.
Citation
If you find this project useful in your research, please consider cite:
@misc{mmseg2020,
title={{MMSegmentation}: OpenMMLab Semantic Segmentation Toolbox and Benchmark},
author={MMSegmentation Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmsegmentation}},
year={2020}
}
Contributing
We appreciate all contributions to improve MMSegmentation. Please refer to CONTRIBUTING.md for the contributing guideline.
Acknowledgement
MMSegmentation is an open source project that welcome any contribution and feedback. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible as well as standardized toolkit to reimplement existing methods and develop their own new semantic segmentation methods.
Projects in OpenMMLab
- MMCV: OpenMMLab foundational library for computer vision.
- MMClassification: OpenMMLab image classification toolbox and benchmark.
- MMDetection: OpenMMLab detection toolbox and benchmark.
- MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
- MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
- MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
- MMTracking: OpenMMLab video perception toolbox and benchmark.
- MMPose: OpenMMLab pose estimation toolbox and benchmark.
- MMEditing: OpenMMLab image and video editing toolbox.
- MMOCR: A Comprehensive Toolbox for Text Detection, Recognition and Understanding.
- MMGeneration: A powerful toolkit for generative models.
- MIM: MIM Installs OpenMMLab Packages.