414 lines
13 KiB
YAML
414 lines
13 KiB
YAML
Collections:
|
|
- Name: UPerNet
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- ADE20K
|
|
- Pascal VOC 2012 + Aug
|
|
Paper:
|
|
URL: https://arxiv.org/pdf/1807.10221.pdf
|
|
Title: Unified Perceptual Parsing for Scene Understanding
|
|
README: configs/upernet/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13
|
|
Version: v0.17.0
|
|
Converted From:
|
|
Code: https://github.com/CSAILVision/unifiedparsing
|
|
Models:
|
|
- Name: upernet_r18_512x1024_40k_cityscapes
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-18
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 223.71
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 4.8
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 75.39
|
|
mIoU(ms+flip): 77.0
|
|
Config: configs/upernet/upernet_r18_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x1024_40k_cityscapes/upernet_r18_512x1024_40k_cityscapes_20220615_113231-12ee861d.pth
|
|
- Name: upernet_r50_512x1024_40k_cityscapes
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-50
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 235.29
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 6.4
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.1
|
|
mIoU(ms+flip): 78.37
|
|
Config: configs/upernet/upernet_r50_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827-aa54cb54.pth
|
|
- Name: upernet_r101_512x1024_40k_cityscapes
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-101
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 263.85
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 7.4
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.69
|
|
mIoU(ms+flip): 80.11
|
|
Config: configs/upernet/upernet_r101_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933-ebce3b10.pth
|
|
- Name: upernet_r50_769x769_40k_cityscapes
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-50
|
|
crop size: (769,769)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 568.18
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 7.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.98
|
|
mIoU(ms+flip): 79.7
|
|
Config: configs/upernet/upernet_r50_769x769_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048-92d21539.pth
|
|
- Name: upernet_r101_769x769_40k_cityscapes
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-101
|
|
crop size: (769,769)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 641.03
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 8.4
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.03
|
|
mIoU(ms+flip): 80.77
|
|
Config: configs/upernet/upernet_r101_769x769_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819-83c95d01.pth
|
|
- Name: upernet_r18_512x1024_80k_cityscapes
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-18
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.02
|
|
mIoU(ms+flip): 77.38
|
|
Config: configs/upernet/upernet_r18_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x1024_80k_cityscapes/upernet_r18_512x1024_80k_cityscapes_20220614_110712-c89a9188.pth
|
|
- Name: upernet_r50_512x1024_80k_cityscapes
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-50
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.19
|
|
mIoU(ms+flip): 79.19
|
|
Config: configs/upernet/upernet_r50_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207-848beca8.pth
|
|
- Name: upernet_r101_512x1024_80k_cityscapes
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-101
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.4
|
|
mIoU(ms+flip): 80.46
|
|
Config: configs/upernet/upernet_r101_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403-f05f2345.pth
|
|
- Name: upernet_r50_769x769_80k_cityscapes
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-50
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.39
|
|
mIoU(ms+flip): 80.92
|
|
Config: configs/upernet/upernet_r50_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107-82ae7d15.pth
|
|
- Name: upernet_r101_769x769_80k_cityscapes
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-101
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.1
|
|
mIoU(ms+flip): 81.49
|
|
Config: configs/upernet/upernet_r101_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014-082fc334.pth
|
|
- Name: upernet_r18_512x512_80k_ade20k
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-18
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 40.39
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 6.6
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 38.76
|
|
mIoU(ms+flip): 39.81
|
|
Config: configs/upernet/upernet_r18_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x512_80k_ade20k/upernet_r18_512x512_80k_ade20k_20220614_110319-22e81719.pth
|
|
- Name: upernet_r50_512x512_80k_ade20k
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-50
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 42.74
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 8.1
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 40.7
|
|
mIoU(ms+flip): 41.81
|
|
Config: configs/upernet/upernet_r50_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127-ecc8377b.pth
|
|
- Name: upernet_r101_512x512_80k_ade20k
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-101
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 49.16
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 9.1
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.91
|
|
mIoU(ms+flip): 43.96
|
|
Config: configs/upernet/upernet_r101_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117-32e4db94.pth
|
|
- Name: upernet_r18_512x512_160k_ade20k
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-18
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 39.23
|
|
mIoU(ms+flip): 39.97
|
|
Config: configs/upernet/upernet_r18_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x512_160k_ade20k/upernet_r18_512x512_160k_ade20k_20220615_113300-791c3f3e.pth
|
|
- Name: upernet_r50_512x512_160k_ade20k
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-50
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.05
|
|
mIoU(ms+flip): 42.78
|
|
Config: configs/upernet/upernet_r50_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328-8534de8d.pth
|
|
- Name: upernet_r101_512x512_160k_ade20k
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-101
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 43.82
|
|
mIoU(ms+flip): 44.85
|
|
Config: configs/upernet/upernet_r101_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951-91b32684.pth
|
|
- Name: upernet_r18_512x512_20k_voc12aug
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-18
|
|
crop size: (512,512)
|
|
lr schd: 20000
|
|
inference time (ms/im):
|
|
- value: 38.76
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 4.8
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 72.9
|
|
mIoU(ms+flip): 74.71
|
|
Config: configs/upernet/upernet_r18_512x512_20k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x512_20k_voc12aug/upernet_r18_512x512_20k_voc12aug_20220614_123910-ed66e455.pth
|
|
- Name: upernet_r50_512x512_20k_voc12aug
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-50
|
|
crop size: (512,512)
|
|
lr schd: 20000
|
|
inference time (ms/im):
|
|
- value: 43.16
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 6.4
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 74.82
|
|
mIoU(ms+flip): 76.35
|
|
Config: configs/upernet/upernet_r50_512x512_20k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330-5b5890a7.pth
|
|
- Name: upernet_r101_512x512_20k_voc12aug
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-101
|
|
crop size: (512,512)
|
|
lr schd: 20000
|
|
inference time (ms/im):
|
|
- value: 50.05
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 7.5
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 77.1
|
|
mIoU(ms+flip): 78.29
|
|
Config: configs/upernet/upernet_r101_512x512_20k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629-f14e7f27.pth
|
|
- Name: upernet_r18_512x512_40k_voc12aug
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-18
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 73.71
|
|
mIoU(ms+flip): 74.61
|
|
Config: configs/upernet/upernet_r18_512x512_40k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r18_512x512_40k_voc12aug/upernet_r18_512x512_40k_voc12aug_20220614_153605-fafeb868.pth
|
|
- Name: upernet_r50_512x512_40k_voc12aug
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-50
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 75.92
|
|
mIoU(ms+flip): 77.44
|
|
Config: configs/upernet/upernet_r50_512x512_40k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257-ca9bcc6b.pth
|
|
- Name: upernet_r101_512x512_40k_voc12aug
|
|
In Collection: UPerNet
|
|
Metadata:
|
|
backbone: R-101
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 77.43
|
|
mIoU(ms+flip): 78.56
|
|
Config: configs/upernet/upernet_r101_512x512_40k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549-e26476ac.pth
|